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 How far will NIF go towards ignition? 

NIF indirect drive 
 
• Most explored approach 
• Impressive recent progress   
• Physics very complicated 
• Small fraction of laser energy on capsule   
• Ignition and significant yield??      

  

NIF Polar drive  
 
• Much more efficient use of laser energy  
• Needs to be explored  
• Effort will advance physics of direct drive  
• Far from optimum configuration for direct drive 
• Ignition and significant yield? 
    

https://lasers.llnl.gov/about/nif/ 
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Energy to compressed & heated fuel 
~10kJ   

Example is with 1.3 MJ 
NIF provides up to 1.8 MJ 
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Direct –drive is much more efficient 

330 kJ 

Energy to compressed and heated fuel  
>37 kJ     

• Example is with a 405 kJ KrF driver 
• Efficiency is >9× greater than indirect drive.  



Options for more robust ignition and high 

yield for laser ICF 

Convert NIF to symmetric direct drive 

• Better illumination uniformity 

• But NIF’s architecture  limits bandwidth and capacity to zoom focus. 

• Still not optimum for direct drive   

New dedicated symmetric direct drive facility  
• KrF or advanced solid state  
• Much higher repetition rate (1 shot per minute) 
• Many physics shots at >10x lower cost/shot  (less costly targets) 
•  < 1MJ may suffice 

Higher Energy indirect drive laser facility  (10MJ?)  
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High yields and gains are predicted for  energies <1 MJ 

with direct-drive shock ignition.    
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High resolution 2-D simulations predict high gain with 

expected target and laser nonuniformities.  

(Shock ignition with 530 kJ KrF driver)    
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A few reminders on KrF’s superior  
capabilities for ICF   

Shorter λ  than frequency tripled Nd:glass 
• Increases absorption and hydrodynamic efficiency   
• Reduces risk from hydro and all laser plasma instabilities  

Multi-stage focal zooming is trivial with KrF  
• Further increases absorption efficiency  
• May be critical to suppress Cross Beam Energy Transport  

Paths to high energy and high rep rate demonstrated on NRL KrF laser facilities   

Broader bandwidth enables superior beam smoothing  

Electra 5 Hz KrF facility  

Nike target facility  



We still think there should be a modest IFE program, but 

realize that we need to get our act together in ICF physics.  

Phase I:  
 Basic IFE 

 Science and 

Technology 

Phase II:   
  

 Develop full size 

components 

Phase III: 
  

 Fusion Test Facility 
• Demonstrate integrated 

physics / technologies for a 

power plant. 

• Tritium breeding, fusion 

power handling. 

• Develop/ validate fusion 

materials and structures. 

•READY FOR PILOT 

POWER PLANT 

Increasing size 

Increasing performance 

Decreasing scientific risk 

Increasing Industry Partnership 



Additional slides  
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Example: development plan for IFE with KrF 

500 kJ FTF 

Single KrF Laser 

Phase I – Complete full performance subscale KrF system 

  
Phase II Develop full size components 

• Single 5 Hz 18 kJ KrF laser beamline 

• Target fabrication /injection /tracking 

• Chamber, optics technologies 

• Refine target physics 

 

 
Phase III  Fusion Test Facility (FTF)  250 MW Fusion (thermal) power 

• Thirty 18 kJ KrF laser beamlines 

•     Show integrated physics / technologies 

•     Gain (about) 100 

•     Tritium breeding, power handling 

•     Develop fusion materials /structures  

 

Phase IV  Prototype Power plant(s) 

• Electricity to the grid 

Chamber 

 30 KrF Lasers 


