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The Significant Gap Bridging ITER Materials and DEMO Materials

- virtually no materials systems currently used are reactor viable -
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The Significant Gap Bridging Plasma Facing Components & Divertors

- virtually no materials systems currently used are reactor viable -
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Challenge of the Fusion Nuclear Environment
- Plasma Wall Interaction, Fusion Neutron Transmutation and Radiation Damage -

Application of leadership class computing and computational
materials science are key tools to accelerate fusion materials
development. However, as governing phenomenon span decades
in length and time scale their use involves necessary grand
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Synergistic response of materials to burning plasma

D-T fusion environment
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Balance of International FUSMAT Program and US Program Strength

- while we partner in multiple technology areas, we are world leading in fusion materials science -
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US Program Strength

- while we partner in multiple technology areas we are world leading in in fusion materials science -

JAEA ITER Test Blanket Module

» The US FUSMAT program has been responsible for the
fundamental development and performance understanding central
to the international fusion program. The three next generation
structural materials, RAFM steels, SiC composite, and ODS steel
were derived in the US program.

 Radiation damage effects from high-energy neutrons addressed through combined fundamental modeling and
experiment. 3
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An Integrated, Component-level Approach to
Fusion Materials Development

Technology Readiness Levels
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* The international FUSMAT program is currently at a technology readiness level substantially behind that of
the overall fusion program. Given the long-lead-time for materials developments, need for facilities, and
serious challenges, a newly focused and augmented program is suggested.

* The new focus would be on aligning independent materials initiatives into one goal-oriented program aiming
to develop FNSF-relevant components guided by a component-level thermo-mechanical design initiative.
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Grand challenge problems that must be addressed

* [s there a viable divertor & first wall PFC solution for DEMO/FNSE?

* [s tungsten armor at high wall temperatures viable?
* Do innovative divertor approaches (e.g., Snowflake, Super-X, or liquid walls) need
to be developed and demonstrated?

* (Can a suitable structural material be developed for DEMO?

* What is the impact of fusion-relevant transmutant H and He on neutron fluence and
operating temperature limits for fusion structural materials?

* [s the current mainstream approach for designing radiation resistance in materials
(high density of nanoscale precipitates) incompatible with fusion tritium safety
objectives due to tritium trapping considerations?

* [s the reduced activation mandate too restrictive for next-step devices, considering

that ITER will utilize materials that are not reduced activation?
* (Can recent advanced manufacturing methods such as 3D templating and additive

manufacturing be utilized to fabricate high performance blanket structures at
moderate cost that still retain sufficient radiation damage resistance?
* What range of trittum partial pressures are viable in fusion coolants,

considering tritium permeation and trapping in piping and structures?
* What level of tritium can be tolerated in the PFCs, heat exchanger primary coolant,
and how efficiently can tritium be removed from continuously processed hot

coolants?
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Contribution of major facilities to fusi,&)oqI materials technology
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