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Target physics: High gain targets will probably require

Cryogenic fuel compressed to high density,
close to Fermi degenerate (FD) conditions

PR, ~0.4g/cm? req'd e« mass=(4x/3)(pR)%/p?
L« If pp7=0.25g/cm3, =Yield ~10’s kilotons
* If pp7 =500g/cm?3, =Yield ~500MJ

Ignition from a hotspot over a few-% of
the fuel mass

p—

Propagating a burn
= T,5~10keV,
= pR,s~0.4g/cm?

An alpha burn wave propagating into
the cold FD fuel mass with adequate
inertial confinement

=

TS 1keV at ag~1, = pulse-shaping
fburn-up ~pR/(pR+7) , = pR~3g/cm?

Good symmetry and stability. Low laser-

plasma instabilities (ICF is 3D!) >

- = Convergence ratios < 35
- = In-flight aspect ratios < 35
2?2310 Wem-~2um-2

O
= | laser

This probably precludes room-temperature,
high pressure gas targets

(But gas targets may be a route to ignition
and burn at gain ~unity)

Gas target — volume ignition

\

Cufoam DT fuel (high
N :; >~ ‘pressure gas) Iit’s all
1T c Low-Z about
Au/Cy /> outer th iS ' '
inner shell shell ——




A survey of ICF targets — Where do we test these on implosion
facilities — and at gain and yield... NIF, (LMJ?)... ?
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A survey of ICF targets — Where do we test these on implosion
facilities — and at gain and yield... NIF, (LMJ?)... ?

~103-person-
hyears of effort
Indirect Drive

\ | / Direct Drive :
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But what target gains might we achieve? ]
Candidate gain curves... Lﬂ;

500 -_I L L I L L R L L L L | ';/‘/‘ r—rr T T T I__
[ , ]
[ e Projected* laser and HI high-gain
400 - /,/ \—_ * Fast ign., shock ign., impact ign.,...
, ]
[ , ]
Targfet 300+ ol | HAPL direct-drive (KrF/DPSSLs)
gain i r/ - hotspot ign.
200; KrF-SI , g ]
] ,‘ HAPL(KIF) _--=""
SR @ -- LIFE/NIF indirect-drive - |
100 _ ’,»"’LIEI;,"\/ hotspot ign. (Amendt) 6HI-RPD
S - bl “~___| Hlindirect-drive -
oL..--—e-~ @ @ . hotspot ign. (RPD)
0O 1 2 3 4 5 6 7
Driver energy (MJ)

(See later in presentation for details of these gain curves)

* Projected = projected in 1-D and initial 2-D studies
but not established in integrated designs
375



The key to higher gain Part-1: Low implosion velocity M

High target gain requires:
« High pR, = more fuel burnup G = Y jusion _ qusion2 _ PR/(PIIS +7)
 Low V , = more fuel mass E e  3Mu,V 7 IM v
assembled for given driver energy Ref. 1
R, 1.8
But “hotspot” (= fast-compression) ignition E _%Fp
needs high velocity to minimize ignition energy ign-reg'd 176 Ref. 2

(1) R.Betti, C.Zhou, Physics Plasmas (2005)

4 (2) M.Herrmann, J. Lindl, M.Tabak, Physics
G ai n Plasmas (2001)
Gain ~1/V1:3
(if ignition occurs)
Hotspot (fast
compression)
Ignition ,
| |
R.Betti V~1.5-2¢7 V.. ~3.e7 Vinax~4.5€7 Velocity (cm/s)
LLE/U.Rochester IFARs~10 |FARs~30 IFARs~50

(ignition fails) (hydro instablities)



The key to higher gain Part-2: High driver-target
coupling efficiencies

L

stagnatlon
— A{
Ed = Eabs = =
river
- EW3"P|U9 Ng E ol nabS'Edriver,. - nhydr E fu3|on
A "=wallplug
‘).‘.-T.- ﬁ - f
Driver Absorption Hydro (rocket) System drive
electrical efficiency efficiency efficiency
efficiency Nabs Nhydro Ewauplug_> Exe
Ny = Td - Nabs * Nhydro
~0.05-0.20 ~0.85 ~0.06-0.1 ~0.01
Lflser (ablative)
direct
~0.05-0.20 ~0.15-0.3 ~0.1-0.15 ~0.005
!_as.er (ablative)
indirect
- ~0.25-0.40 ~0.9 ~0.20 ~0.05
H.eavy ion -EI:I> (tamped ablative)
direct
Pulsed power -\ 0 ~0.2 - 0.3 (direct ~0.05
direct magnetic)
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* Energy /Power
~4 MJ/ 850TW @ 1.06um (L.R)
~2.8MJ / 700TW @ 0.53um (green)
~1.8MJ / 500TW @ 0.35um (U.V)

* Pulse length <30ns

* Rise time ~0.25ns (—0.1ns)

% [Laser energy (kJ) (includes s
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Indirect Drive Hohlraums in NIF geometry with hotspot ignition are

enabling for IFE for near term application

L

Yields versus laser energy for NIF geometry hot spot ignition hohlraums
i | ST
o bl ul
ol 160853 | !
150 Eo1- LIFE: |
Fusion = | Gain ~ 60 \
Yield @2.2MJ ;
(MJ) :
100 [ .
|
- LMJ NIC: Band is |
Gain ~ 20 Gai '15 uncertainty in |
ain ~ hohlraum
50 - @O'QN!J : coupling |
Ny ! efficiency : NIF limit
u \Ta \ 225/ NIF limit i ~NIF limi
ROX SEN% !
300 oy 300V , 2t 3o if—t—zw
0 . . 1
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Laser energy (MJ)

J.Lindl “Ignition Campaign Strategy” (2007)
P.Amendt (2011); Lafitte (2010)



Indirect Drive: NIC-like tune with rugby hohlraum and .
LEH-shields is progressing towards higher gain for LIFE

Gain ~60 @ 2.2MJ

0.5

* ~ 20% improvement with rugby- A,
shaped hohlraums is expected: A= ”°m,:,“;-~~~

\ ) {0.712 mg'cc) i “'8][ .
NIC-like ,@( ) %@ P2-shield %
f \ ﬂ' '

§ 7o |

0.5 1.0cm

Diamond ablator 100
DT/CH-foam fuel

* ~ 15% improvement
with use of LEH-shields
IS predicted:

()
NY

£ 6 o
m e
l O 4«

« ~15% further improve-
ment from 5% greater
capsule size is expected:

O
NY

0 50 100 150 200 250 300

Yield [MJ]

These planned improvements in efficiency (~50%) will be directly
tested on the NIF

P.Amendt , Jan 2010



Laser Direct Drive (hotspot ignition): LLE’s NIF designs predict .
gains ~20-40 at 1MJ. HAPL results suggest >100 at 2MJ for KrF

NIF Polar Direct Drive (Skupsky, Marozas)
Gain~20-35 @1MJ ; with all 2D sources (beam
balance, imprint, outer/ice roughness, ...etc)

20

o {{ B
0 20 40 60 80 100
r

Physics of Plasmas 2007

One-Megajoule wetted-foam target-design performance for the

NIF Symmetric 4-Pi Direct Drive(Collins)
Gain~40in 2D @1MJ

National Ignition Facility
\

ol
200 KrF (0.25um)
< 150] ~ DPSSL 30
Direct Drive Simulations for HAPL G 100! (0.35um)
Gain >100@2MJ w/ KrF and zooming 50| M
o!

1 2 3 4 5
Laser energy (MJ)



Shock Ignition*: Implode at low velocity and ignite separately E

Conventional hotspot

(fast compression) drive Shock ignition - shock pulse
Does double duty: Spike launches late-time shock
fuel assembly and high RTTRELE . timed to reach fuel at stagnation E =
velocity(=3.5e7cm/s) for ignition ' ' => Ignition ke ezl e (K
4 2
Laser ~1/2 My Vy
Power Shock ignition — Compression / \
Drive pulse assembles fuel at low :
velocity (s2e7cm/s) hlgh low
=> No ignition
— Time
® Higher gain/yield for a given laser drive energy in a | I
more robust capsule \
@ Relative to “fast-ignition” : | o ‘
— Time/spatial requirements less stringent (~ x10) Compression Compression
— Uses same laser (no separate short pulse laser req’d) only plus shock

Hotspot at ign./stagnation

Are these more forgiving
relative to a conventional
hotspot ignition target?

* R. Betti, et al., Phys. Rev. Lett., 98, 155001 (2007) Schurtz, Atzeni, et al

— Process modeling is (more or less) standard hydro
— But conventional symmetry/stability constraints applyk




Shock Ignition: Preliminary yield and gain curves for NIF* @

NIF Shock Ignition Yield Curve NIF Shock Ignition Targets are Simple

— All-DT Solid DT CH ablator
o 9 v fufll qtnd w:é:hed into DT fuel
§ §- 180TW 485TW ablator foam
\ 'I;ime ' ' || ".| ,‘
\ . \ | LLEW.Roch
1G] 00 V— '| (to '\ u" \ | LLNL*
—_ i % ] \[ scale) | \/ CELIA/CEA
g 250¢ ; \ \
3 200 DT/foam g NIF Shock Ignition Gain Curve
'S 150 ¢ .
S 100! () § Galn(3w) ~ 126 E,ase 0.510
8 of DI/CH NIENIC 150 N
L i iti ] L
N 85 @207 o1 @ Baseime | c
. 0.5 1.0 1.5 2.0 © DT/foam
Laser energy (MJ) 100p CH/ DI ablators
7 o
= 0 2 QAIl- NIF NIC
o 9 = 5ol All-DT NIF N
@ £t s0Tw—, |[ > 225TW = d.drive®  Ignition
-1 O

0 polar d.drive® gaseline ]
00 05 10 15 20
Laser energy (MJ)

Time

* L.JPerkins, et al., Phys. Rev. Lett., 103, 045004 (2009)



Shock Ignition: In the near-intermediate term must be fielded on NIF in
polar direct-drive. = Optimization of NIF polar drive symmetry

P 350TW
175TW o
o p Eﬂl p, 175TW
23 :) S S .
o o - ] B
Symmetry <=, /S Focused atry__ .ngqtilsaldl; i Focused atr,, .,
axis = / - 24 quads, > ' 24 quads
N445 .96 beams ~192beame 96 beams
All-DT fuel and ablator, j N
aspect ratio 2.7; i \ " Y e Lo
~0.5MJ-drive, gain-60, / oV o ~H 24 NIF quads
30MJ yield ‘ > ‘=, . ‘
‘k’ ¥ >

el 8 : n Wb
« - N o a
‘ A L) —v s Py
- \» Symmetry control: .
P o = ' 8 rings of (split) quads
e yy ‘A independently power phased;
g 16 rings of beams, top and
Ry bottom, all iIndependently
fo 5\ =~ - pointed and focused

Split quad pointing for
optimum beam
uniformity
One ring of 4 quads into
one ring of 8 beams

s

Y il Example of split quad “ ' E "-,@‘ é . ‘@.
® R pointing: Y " s 9 \
,_,,;m 0 @\ One ring of 4 quads into ) f ! L'“i , [
1 t H—‘ = two rings of 16 beams: I 4 J .’T% ! L [ as
Lo ® ' T45%apart 90%°apart—Y | Y 3 a /A
.. - O * - . 4 N
A g B o B®) @ -g- 0 (©) H

Present work at LLE and LLNL is focused on optimization of drive symmetry and
shock coupling efficiency using static “zooming”



Shock Ignition — KrF lasers potentially offer higher-gain with I!l.
smaller lasers and power-plant-class yields

Enabled by KrF attributes: Shorter UV wavelength, higher bandwidth,
‘zoomed” focal profile, higher threshold for laser plasma instability

1-D simulations High resolution 2-D
simulations
Gain =102 @ 521 kJ

L= 16.‘7(“,‘.‘. "y .

300 ". Gain >200

at 1MJ ! s
Target itio
Gan ¢ N @ _.--- ¥ 331-""-' 5
200 . g Eas
’, - -
’ i
’ —~ -
’ -,
’ ,
100 ' ’ ~ ’ -
Y%conventional Lo U ]
."Direct Drive Realistic 2D simulations
: KrF (248nm) * NIF Indirect Drive typically give ~70% of
0 3 R, Llgiisety sug' St Bitg ke iy SSsls Lo aa's the1DgaIn

Laser Energy (MJ) S.Obenschain, A.Schmitt NRL



Fast Ignition: Decouple compression from ignition
(and alleviate conventional symmetry/stability constraints)

- ey N 09
Fast ignition E,-gn Fast Ignition '!’I?\/{V%
offers potential lasergy y ~-100 =
. c _
target gains of N‘
~100 at 1MJ % |
o
s 10
2 g :
20.5g/ em ~10keV = NIC Central Hot
N / ‘ Spot Ignition
ro_ ] [(Pr)io L5 | | minimum <
ign L 2 - Ehotspot 1t i I i | i i
laser f coupled P ~15kdJ 0.1 1 10
Laser Energy (MJ)
3D rad-hydro codes
(hydrodynamics, radiation,
ionization kinetics, burn, etc.) N
Fl target design:

Conventional ICF (rad-hydro)
plus relativistic laser-plasma
interactions (kinetic-PIC)

3D kinetic PIC codes (full

and kinetic particles; high
spatial, temporal resolution)

Maxwell's equations for fields

3D hybrid transport codes
(kinetic fast electrons with

" fluid background plasma)

= Rich multi-scale physics

P.Patel LLNL
S. Atzeni Phys Plasmas (1999)



Fast Ignition: Integrated compression/core heating experiments will .
validate key coupling physics prior to a fast ignition demonstration

FIREX (ILE Osaka) OMEGA EP (LLE U.Roch.)

NIF ARC (LLNL)

1 3.3 34 35 36 3.7 3.8 3.9 4.0

01
Heating laser power (PW) OMEGA EP arrival time (ns)

Diagnostic
beampath

)X
! B
] :
L A
J ;
G <
L &
. 400
—
1
>
il
20 "
Y

radius (Lum)

10 kJ, 20 compression, 30 kJ, 3w compression, 1.7 MJ, 3w compression,
10 kJ, 10 ps ignitor 2.6 kJ, 10 ps ignitor 10 kJ, 10 ps ignitor

= NIF+ARC can evaluate core heating of an ignition-scale fuel assembly,
and thus determine the requirements for high gain fast ignition

P.Patel LLNL



Gas Targets: Non-cryogenic, room-temperature single- and double-shell .
targets may offer an alternative route to ICF ignition (but at low gain)

Single Shell — (Volume) shock Ignition Double Shell
- polar direct drive - - indirect drive -
direct =
o
r Q_
Graded \Be _» @ S
ablator/ A s « ~1.3MJ
pusher L=
. — Cu /oam BT fuel (high
Be anti-mix Time
layer Room ‘/ pressure gas)
temperature : TS
DT gas _ y
~25Atm. Volumetric Au/Cu’inner
shock ignition shell
Low-Z outer shell

NIF 1D yields >1MJ, but....

* High fuel burn fractions (~50%)

+ Simple to field (room-temperature, no cryo...)

* Pusher shells are graded low Z to high Z

* Volumetric burn, ~4keV ignition temperatures

* Recognized challenge is controlling fuel/pusher mix

* But...... inherently low gain (~1-10) — no propagating burn into cold fuel
20



Heavy lon Targets: There are several target classes under study....

Features Issues
Indirect drive * Integrated 2D designs exist | « Low drive efficiency
_ * Ablation physics on NIF « Lower gains, high driver energies
b= o — ° H
..L.KVQ“F Natural two-sided geometry
Direct drive X-target * Inherent one-sided drive, * Higher ion kinetic energies
_ all-DT « High gains require high densities
» High coupling efficiencies under quasi-3D compression
» Reduced stability issues * Hollow beams desirable for
» Potential for high yields fastigniton
(~GJ) and gains * Driver concepts immature
Direct drive - tamped, shock ign. | * High coupling efficiencies * Optimum ion species and energy
Au tamper (tamped ablation) - Stability to be confirmed
Single beam [0 "ueVablator * Simple targets - Two-sided (polar) geometry to be
_KCE ~3GeV iy  High gains consistent with established*
single ion-kinetic-energies
(~2-10GeV)
* Highest potential gains » Complex hydro design process
« Potential one-sided drive to achieve two-sided assembly
* Application to advanced
energy conversion

An integrated target-driver R&D program can be identified
for each of these target design classes.

*Will leverage present NIF PDD studies ** J. Nuckolls IFSA San Francisco (2009) 2



Heavy lon Targets: Indirect drive hohlraums with ~NIF hot-spot-ign
implosion physics are a well documented approach

Wl

Standard Hohlraum
Gain ~60 at 6MJ
(CCR=2.1 Beam spot ~2x4mm)

L

™~

Close-Coupled
Gain ~130 at 3.3MJ
(CCR=1.6 Beam spot ~1.7mm)

Gain

Hybrid Target
Gain ~60 at 7MJ
(Beam spot ~4x5.5mm)

80 HIF Robust
Point Design

(large angle

60 beams

40 ~ 10xRgp0t

20 '
@ (NIFNIC
baseline)

02 4 6 8 10
Driver energy (MJ)

~3-4.5Gev Pb*

Heavy ion indirect drive will likely
require larger driver energies

22



Heavy lon Targets: The X-target: I!|.
Potential for one-sided drive and high gainlyield

— Potential one-sided drive (=thick liquid wall chambers)
— Large fuel masses, high gains/yields (>1GJ)

— Low-velocity low-aspect-ratio fuel assembly

— More robust to high mode stability (fast ignition)

X-Target 2-D Hydro Calcs

Range

. Au tamp
~1.3g/em? ions —shell 4

_______ All DT

fuel/abl
Hollow Fl beam
_-->‘_ ----- 3 SR ~1cm

‘Quasi-

spherical

——————— compression
------ v s . B
Quasi-Spherical Hollow beam
Compression Ignition

— High gain requires med-high density quasi-spherical assembly — 2D hydro optimization
— Requires efficient ignition source — Hollow-beam fast ignition

— Effect of high-Z scrape mix in ignition region? — High-mode mix studies

— Which range-1.83gcm?-ions? (e.g. 20GeV Cs...) — HI driver design confirmation




Heavy lon Targets: The X-target:
Potential for one-sided drive and high gainlyield

o Vontad and ot sk

:




Heavy lon Targets: A solution to the low ion kinetic energies I!|.
req’d for Hl direct-drive may be found in tamped “cannonballs”

Single K.E ~3GeV HI

single high-energy (~2-10GeV) ion species

+ TCs have high hydro efficiency =20% (combination \ JAu tamper (220um)
of direct and radiation) that compensates for energy X ablator
loss in tamp

- Addition of shock ignition may enable gains ~100 at DT fuel

il X = DT, DT/CH,
+ Further gain increases in gain are possible with H, Be, B,...TBD
zooming DT

gas

« Optimum ion species and kinetic energies TBD — Tradeoff between tamp
thickness and drive efficiency

- Stability to be confirmed — lon-driven instability (but low velocity, fat shells with
high ablative ion-range/radiation smoothing)

« Two-sided polar drive geometry to be established — Will leverage NIF PPD
optimization studies (but heavy-ions don’t refract)

25



Pulsed Power: Efficient driver/target coupling (and low cost drivers)@

Pulsed Power IFE favors large

yields and low rep-rates

%‘% e Yield ~GJ's
24 wen  « Rep-rates <1Hz
-\ "k Driver costs ~$’s/J
f" 4‘&32;’?  Recyclable transmission
S — lines

+ Liquid walls

'’ Compressed axial
magnetic field lines

-
E
&)

s
@
Q
c
o

s

k]

°

.

6 -4 -2 0 2 4 6
radius (cm)

+ ~20-30% of the driver energy can end
up in the target/fuel at stagnation

+ >20-X more efficient than indirect drive
+ Major issue: mageto-Rayleigh-Taylor
(S.Slutz et al, Phys Plasmas 2010)

Max Geng ~ qusion/EwaIIpIug

000

100

10

—_

01

Point-of-departure target designs:
Double ended hohlraums

* Indirect drive (NIF implosion physics)
« ~18MJ into x-rays

« ~1.2MJ absorbed (n,,s~7%)

« ~500MJ yields

« Gains ~10

Isochoric

- |sobaric
Volumetric / LTI
T-poor (1%) DD w/ FI

e Optimistic Conservative
e (upper lines)  (lower lines)
A . = 1.5 Ay = 3.0
Laser qlrect drive e B025 T sy = 0,125
shock ign. Noositmget ™ 045 Thoagsagee = 0-35
= Nuscredsons = 03 Narodiond = 0-1

1 10 R.Vesey, A.Sefcow,
Target absorbed energy (MJ) S.Slutz SNL
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Impact (fast) ignition: predicts gains >100 at 1MJ (and like regular fast
ignition may alleviate symmetry/stability constraints)

Time (ns)

25

20

1.5

1.0

0.5

Impactor - Requirement for Ignition

* Kinetic energy — Thermal energy
1/2 m.v2 — 2nkT (T~10keV)
=V = ~108cm/s
* Momentum— stagnation pressure
p.v2 — P,
=2.20p7,,, a=3, p,,,, =200 gcc)

=>p =5 glcc

(P

core

~108cm/s flyer plate velocities have been
obtained experimentally @ NIKE (NRL)

1000 {

@ 800 /

E

;;_ 600

g 400 /

. 2 74
\ impact on 200 . o
- e Saprld
trajectory ~ Sraphite 5 ]
' 10.5 um CH foil 08 10 12 14
Time (ns)
200 400 600
Space (um)

M.Murakami ILE/Osaka, M.Karasik NRL
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Impact (fast) ignition: With the impact effect, neutron yield has I!l.
been enhanced by a factor of about 100

Main fuel:
CD shedl 10 e Laser: 2w, E=3 kJ, 1.3 ns

Target: CD shell 7 umt, 500 um¢

Impactor:
Laser: 2w, | ~200 TW/cm?, 1.3 ns

Target: hemispherical CD 10 umt,

500 um?
7 ! i 4
10 % ! 10 3 RT growth can be suppressed by
: - radiation from high-z dopant
i A 8
© 5 ' 3
€ 10 - 10 g
>
§ f -—
5 1 \ 4 g CH 40 pm* CHBr(3%) 13.5 pm*
2 10" 7 ¢ \ F10° =
2 .‘.19.?: oooooooooooo P . 9
o L :
$ 1
10" 1= . — 10" §
)
2 -1 0 1 2 x M.Murakami ILE/Osaka

Collision timing (ns) 2



Magnetically-insulated ICF: Laser-compressed magnetic fields
could thermally insulate the hot spot of an ICF target

1

e Electron heat conduction K ~ Te5 %~ BT

 a-particle range ~ 1/B

* Thus ignition conditions on pRygand
Tyscould be relaxed (= higher gains)

The compressed fields within the dense core
were measured via proton deflectometry

B-field induced
upshift

Coil
shadow

Simulated proton density

Proton density map at
map at the detector surface

the detector surface

(Orlin, Knauer LLE/U,Rochester)

Seed field

i

Compressed field

w
T

Temperature (keV)

o
O

510 15 20
Distance (um)

Imploding a magnetized ICF target results in
higher hot-spot temperatures

Proton
backlighter

Initial OMEGA experiments on compression of
0.05 MG field, seeded in cylindrical targets by
a coil, show fields compressed to > 10 MG.

Verification of yield enhancement will be the first stage of an experimental
campaign to measure thermal insulation of ignition-scalable hot spots.




The required fusion gains for IFE targets are determined by I!|.
power plant economics

Laser, heavy-ions, M= {~ 1.2 pure fusion
pulsed power,... ~ 4—6 fission hybrid

i E " Thermal cycl
I?r!ver driver Blanket G.ME,,,,.rr ermal cycle
efficiency —> qain 7 »| efficiency
ld M rep-rate "
EwaIIpIug P P e, gross
P, . =E,_.rf Aux plant_fe—" = 1Py
e, driver driver -1/ Mg Pe, recirc
< <
g+
P e, net &“
ok
P e,net =P e,gross P e,recirc = nth G M. Ednver' - Edriver'r f'/ nd - P aux



