# **Summary Report of the Energy Issues Working Group**

#### Organizer: Farrokh Najmabadi

Covenors: Jeffrey Freidberg, Wayne Meier, Gerald Navaratil, Bill Nevins, John Perkins, Ron Stambaugh, Don Steiner, Ned Sauthoff

1999 Fusion Summer Study

#### July 12-23, 1999, Snowmass, CO

Energy Working Group Web Site: http://aries.ucsd.edu/snowmass

## Energy Issues WG has Two Subgroups

- **Subgroup A**: "Long-term Visions for Fusion Power"
  - \* Convenors: Jeffrey Freidberg,, Bill Nevins, John Perkins, **Don Steiner**
- **Subgroup B:** "Range of Steps Along Development Paths, Options, Directions, Accomplishments, & Decision Criteria"
  - \* Convenors: Wayne Meier, Gerald Navaratil,,

Ron Stambaugh, Ned Sauthoff

# **Subgroup A**: "Long-term Visions for Fusion Power"

- What is the projected market for electrical energy production in the next century?
- What is Fusion's Potential for penetrating the energy market in the next century?
- Is there a potential role for advanced fusion fuels?
- What is Fusion's potential for applications other than conventional power plants?

## Fusion Introduction into Energy Market

#### **Observations:**

• To meet the projected growing demand of electricity and to stabilize CO<sub>2</sub> concentration in atmosphere in 2050 and beyond, a large number of new power plants are required.



• This represents an opportunity for fusion energy development.

## **Opportunities for Fusion Development**

- Our program strategy should continue to focus on scientific achievements and measured progress toward fusion energy goal.
- Moreover, we should also strive to gain broad acceptance of a plan to introduce commercial fusion energy by 2050 in order to be taken seriously by energy planners and forecasters.

# Achieving the Safety and Environmental Potential of Fusion is Essential to its Competitiveness\*

| Metric                                                                        | Goal                                           |
|-------------------------------------------------------------------------------|------------------------------------------------|
| Cost of Electricity                                                           | 5-6 c/kWh (1998\$)                             |
| Accident dose limit                                                           | No public evacuation (<1 rem at site boundary) |
| Rad. Waste disposal criterion                                                 | Class C or better                              |
| Fuel cycle closed on site                                                     | Yes                                            |
| Atmospheric pollutants (CO <sub>2</sub> , SO <sub>2</sub> , NO <sub>X</sub> ) | Negligible                                     |
| Occupational dose to a worker                                                 | < 5 rem/yr                                     |
| Capacity factor                                                               | > 80%                                          |
| Major unscheduled shutdowns                                                   | < 0.1 per year                                 |

\* FESAC Panel on program balance, metrics, and goals (draft report).

### Projected COE for Future Energy Sources

#### **Observations:**

- Future energy sources (Csequestered fossil, fission, ...) projected to be in the COE range 3-6 c/kWh.
- Design studies show that fusion can compete if its full safety, environmental, and waste potential is realized.
- Fusion development should continue to pursue physics, engineering, & technology improvements/innovations to further reduce projected COE.

#### **Estimated range of COE for 2020** EPRI Electric Supply Roadmap (1/99)



 Impact of \$100/ton carbon tax.
 Other Estimates from Energy Information Agency Annual Energy Outlook 1999. Fusion Power Plant Attractiveness, Technical Risk, and Balance

#### **Observations:**

- Tokamaks could lead to an attractive power plant.
- Stellarator, ST, and IFE concepts could also lead to attractive power plants, but at this point, are behind in demonstrated performance.
- Emerging concepts may lead to improvements in power plant attractiveness but they should be evaluated mainly on the basis of physics credibility.

#### **Opportunity/Issue:**

- It is too early to narrow down to one option and a balanced program is essential.
- As concepts move through the stages of development, power plant attractiveness and development cost and time frame, should be an increasingly important metric in allocating resources.

## Advanced Fuels (D-<sup>3</sup>He) Summary of Assessment, Issues, & Opportunities

| Issue                       | Metric                          | Goal                                | Opportunities                                      |
|-----------------------------|---------------------------------|-------------------------------------|----------------------------------------------------|
| Energy<br>confinement       | $n_{e}\tau_{E}T$                | $\sim 10^{23}$ keV-s/m <sup>3</sup> | To be addressed by<br>Physics program              |
| $\alpha/p$ -ash             | $	au_{ m p}^{*}$ / $	au_{ m E}$ | ≤ <u>3</u>                          | **                                                 |
| Power density               | $\beta B^2$                     | ? 12 T <sup>2</sup>                 | **                                                 |
| Synchrotron radiation       | Power loss<br>fraction          | << fusion power                     | Develop tools for accurate calculation             |
| Safety &<br>environment     | Activation                      | Reduced waste volume                | Build on ongoing engineering efforts               |
| Operation                   | Radiation lifetime              | Plant lifetime                      | "                                                  |
| Direct conversion           | Efficiency                      | 60%-70%                             | Small-scale tests                                  |
| <sup>3</sup> He fuel supply | Accessibility<br>& cost         | \$500/g                             | <ul> <li>Lunar mining</li> <li>Breeding</li> </ul> |

# Advanced Fuels (D-<sup>3</sup>He)

Summary of Assessment, Issues, & Opportunities

#### Challenges:

- Large physics extrapolation with respect to DT fuel: (factors of ~ 50 in  $n_e \tau_E T$ , ~5 in  $\beta B^2$ , and ~2-5 in  $\tau_p^* / \tau_E$ )
- Large heat flux on in-vessel components and/or efficient direct conversion.
- <sup>3</sup>He fuel supply.

#### **Potential advantages:**

- Reduced waste volume.
- Plant-lifetime components

#### **Opportunities:**

• Promising physics embodiments need to be demonstrated.

# Several Non-Electric Applications Have Been Proposed

- Neutron sources for fusion-fission applications (Breeding of <sup>233</sup>U, Burning of Pu and other actinides, Burning of depleted Uranium)
  - \* <u>Fusion embodiment:</u> Low Q (~1-5), CW or high duty factor, approaching power-plant technology (tokamak & ST)
  - \* <u>Metrics:</u> 1) Cost of neutrons, 2) Neutron spectrum effectiveness, 3)  $k_{eff}$
- Use of process heat for co-generation (e.g., hydrogen production)
  - <u>Fusion embodiment:</u> Large output power plants
- Deep-space propulsion applications
  - \* <u>Fusion embodiment:</u> Large power output (1-8 GW), advanced fuel (D-<sup>3</sup>He), ST, FRC, and other emerging concepts.
  - \* <u>Metrics:</u> 1) Specific impulse (exhaust velocity), 2) Specific power (kW/kg)

## Summary of Assessment, Issues, & Opportunities

| Item                                   | Neutron Source                                                                                  | Space Propulsion                                      |
|----------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Market<br>Penetration<br>& Customer    | <ul> <li><sup>\lapha</sup> Nuclear power industry</li> <li>\lapha DOE/Waste Disposal</li> </ul> | <pre> </pre> NASA                                     |
| Competition                            | <ul> <li>Fission</li> <li>Accelerators</li> <li>Burial</li> </ul>                               | One of the few options<br>for deep-space<br>missions. |
| Environment,<br>Safety, &<br>Licensing | Applications look<br>more like fission than<br>fusion                                           | Safety implications not yet assessed.                 |

## Summary of Assessment, Issues, & Opportunities

| Item                    | Neutron Source                                                                                                                                                                                              | Space Propulsion                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Impact on<br>Time-scale | Could provide an<br>intermediate mission prior to<br>pure fusion systems                                                                                                                                    | <ul> <li>NASA interest<br/>provides outside<br/>advocate for fusion<br/>development</li> </ul> |
| Key Issues              | <ul> <li>Must establish a market niche</li> <li>Impact on fusion image</li> <li>Impact on pure fusion<br/>development plan</li> <li>Technology, reliability, &amp;<br/>availability implications</li> </ul> | Technical basis     must be     established                                                    |
| Opportunities           | <ul> <li>System studies</li> <li>NSO program</li> </ul>                                                                                                                                                     | NASA/DOE     cooperation                                                                       |

# **Subgroup A**: "Long-term Visions for Fusion Power"

• What is the projected market for electrical energy production in the next century?

Demand for non-polluting technologies will be enormous.

• What is Fusion's Potential for penetrating the energy market in the next century?

It depends on pace of technical progress and demonstrating its environmental potential.

- Is there a potential role for advanced fusion fuels? Physics embodiments need to be demonstrated.
- What is Fusion's potential for applications other than conventional power plants?
   Several applications have been identified