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Complementarity of MFE Research Portfolio
Targets Critical Issues

¥ Classify by degree of external
magnetic control vs ability of
plasma to organize itself

¥ Strong degree of
complementarity and
commonality in concepts

Ð Study of one enhances ability to
develop others
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The Goals of MFE Research

Determine the optimum magnetic configuration(s) for attractive fusion
energy production, by ...

• Using a spectrum of magnetic configurations ranging from externally-controlled
to self organized, to ...
– Understand the scientific foundations of MFE (equilibrium and

stability, transport, boundary, plasma control), and to..
– Integrate these elements to optimize a steady-state, high-performance

magnetic fusion plasma
Be prepared to move forward with the next stage of MFE

development
— Burning Plasma (JET-Upgrade, FIRE, Ignitor)
– Steady State (KSTAR, …)
– Integrated test of sustained burning plasma (ITER-RC)

Participate in the ITER-RC if EU or Japan decide to construct
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MFE Goals (cont.)

¥ Provide fertile environment for new ideas and innovation
in MFE
Ð New confinement concepts, improvements/hybrids of

existing concepts
Ð Cross-fertilization of ideas and research across concepts



Two over-arching themes have emerged from the
MFCWG discussions

Across Magnetic Concepts and Across Scientific Disciplines

• Physics Understanding and Predictive Capability to Develop the
Scientific Basis for Fusion Energy
– Allows (fosters) commonality across concepts and levels of development
— Transferability of physics learned from one magnetic concept to another
— Rapid development of concepts (possibly skipping a level)
— Opportunity to reduce the cost of fusion energy development

Optimal design of experiments/facilities— rapid development
• Development and employment of plasma control tools

— Scientific Understanding
— Performance optimization
— Innovative technological and scientific solutions

⇒  Partnership between technology & physics



Elements required for
 physics understanding and predictive capability

¥ Innovative, comprehensive diagnostic measurements are
essential

¥ Operational time for detailed scientific investigation

¥ Strong coupling between theory, modeling, and
experiment

¥ Inclusion of more complete plasma physics and detailed
geometric effects into modeling codes using advanced
computational tools

¥ Control tools for detailed physics investigation

¥ Program emphasis: strong focus on science
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MHD Stability in the MFE Roadmap
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Improving plasma stability: Issues & Opportunities

¥ Critical issue: Fusion performance improves with beta, but É..
MHD instabilities often limit performance at high beta.
Ð Ideal Kink/Ballooning Modes (limits are well understood)
Ð Tearing Modes (including Neoclassical)
Ð Resistive Wall Modes
A possible consequence of violating stability boundaries is a disruption

¥ Opportunity: Configuration innovation extends stability boundaries
Ð 2D and 3D discharge shaping, helical coils

(2-D): C-MOD, DIII-D, NSTX, MAST, É        (3D):   NCSX
Ð Profile modifications at low aspect ratio MAST, NSTX, Pegasus
Ð Suppression of instabilities by negative magnetic shear  LHD, NCSX,

 Reversed-Shear Tokamaks
Ð Flowing liquid lithium wall New concept, needs further evaluation
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Improving plasma stability - Opportunities

¥ Avoidance of instabilities:
Ð Optimization of pressure and current profiles  Many Devices
Ð Active feedback control of profiles (ASDEX-U, C-MOD, DIII-D, JET, JT-60U, MST)
Ð Rotational stabilization
 Very high natural rotation (ST, Spheromak, FRC),or driven rotation (ET)

¥ Active control of MHD modes
Ð Feedback stabilization by localized RF current drive

ASDEX-U, COMPASS-D (now); DIII-D (2000)
Ð Feedback stabilization by external coils  DIII-D, HBT-EP (1999-2003);
 need concept exploration for RFP.

ýDisruption Mitigation
ý neutral point operation (JT-60U), solid or gas injection (C-MOD, JT-60U, ASDEX,

DIII-D); liquid jet
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Beyond Standard MHD

¥ Critical issue: Ideal and resistive MHD has had much quantitative success, but ...
Standard ideal and resistive MHD is not sufficient to describe some magnetic
configurations and observed phenomena.

¥ Opportunity: Develop and apply analytic theory and predictive codes with:
Ð Flow, flow shear (equilibrium, relaxation, stability: RWM, ...)
Ð Neoclassical effects (resistive stability: NTM, ...)
Ð 2-fluid physics (equilibrium and stability)
Ð Finite Larmor radius (ideal and resistive stability)
Ð Kinetic effects (energetic particle instabilities: TAE, ...)
Ð 3D magnetic field structure (islands, stochasticity)

ý Linear and nonlinear, 2-D and 3-D analytic theory and fluid-based codes are an
opportunity to include these additional physics effects for all configurations.

ý Need to support both analytic theory and large scale code development, and
encourage coupling of theory/ numerics/experiment.
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Transport in the MFE Roadmap
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Taylor Snowmass p1

Transport Issues

1. Need for science based predictive capability for transport
including density limits.
Ð Empiricism useful but can only take us so far
Ð Special requirements

¥ Particle and impurity transport
¥ Electron thermal transport
¥ Neo-classical transport
¥ Dynamics

Why is solving this essential?

¥ Confidence in design
Ð Reduce uncertainty and costs for Ònext stageÓ for all

concepts at any stage of development.
Ð Ability to transfer physics experience between concepts

¥ Enable rapid innovation of new or improved concepts

¥ Turbulent transport as physics Ògrand challengeÓ



Taylor Snowmass p2

Transport Opportunities

Develop physics based predictive capability

¥ Improve experimental/theory/computation cooperation and
comparison

¥ Key additional physics in turbulence simulations
Ð Electromagnetics, electron, and impurity dynamics
Ð General geometry
Ð Flows
Ð edge/core coupling

¥ Extend diagnostic coverage of turbulence (core and edge)
Ð Measure key quantities                        over a wide range

of spatial scales
Ð Employ new ways of measuring and analyzing

turbulence (imaging, cross phase measurements,
synthetic diagnostics from simulations, É)

Ð Pursue innovation
¥ Marshal additional resources

Ð Machine run time and port space
Ð Turbulence and transport studies in new facilities (from

basic plasma to burning plasma experiments)
Ð Exploit next generation computing capabilities
Ð Pursue interconcept studies

n, ϕ, T, B∼ ∼ ∼ ∼



Taylor Snowmass p3

Need to Control Turbulence & Transport

This implies control of density, temperature, current and
flow profiles

Why essential?

¥ Improve performance (eg. β, τ, , etc.)

¥ Control pressure and current profiles consistent with
MHD stability

¥ Optimize profiles for bootstrap current Ð steady state
(relax current drive requirements)

¥ Formation and dynamic control of bifurcations and
transport barriers

Opportunities

¥ Deploy and test tools
Ð Flow control, particularly RF drive
Ð Current drive
Ð Density control/fueling
Ð Power deposition

¥ Profile diagnostics (eg Vθ)

¥ Demonstrate integrated high β, enhanced
confinement, steady state operation

¥ Integrate theoretical modeling in control design
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Boundary Plasma in the MFE Roadmap
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 Plasma Boundary: We have a solution for a
conventional Tokamak

¥ We have a reasonable scientific basis for a conventional
long-pulse tokamak divertor solution at high density
(collisional edge, detached)
Ð Low Te recombining plasma leads to low heat and particle fluxes at

wall
Ð Adequate ash control, compatible with ELMing H-mode confinement
Ð Appropriate for future tokamaks (e.g. to  high density ITER-RC)
Ð We have concerns about  simultaneously handling disruptions/ELMs

and tritium inventory which shorten divertor lifetime

¥ The challenge is to find self-consistent operating modes
for other configurations ...



There are  common boundary control ISSUES & OPPORTUNITIES
that must be addressed to move MFE concepts forward

1. Extend boundary control techniques to lower-collisionality
plasmas and other magnetic geometries

¥ Poloidal Divertor  at low density for current drive (AT, ST, Spheromak)

¥ Non-axisymmetric magnetic geometries (Stellarator, RFP)

¥ Radiative Mantle (all)

¥ Kinetic effects, drifts (all);  large mirror ratio (ST and LDX)

2.  Develop control of impurity sources & transport to maximize
boundary radiation and core cleanliness

¥ Flow control techniques, e.g. induced SOL ion flow, neutral flow valve
(Tokamaks, ST)

¥ Better impurity source and transport characterization (all)

¥ Biasing, helicity injection, RF launchers (Tokamaks, ST, Spheromak,
Mirrors)



Boundary ISSUES & OPPORTUNITIES (cont)

3. Develop reactor-relevant materials (e.g. low T retention and
radiation effects) compatible with clean core plasmas

¥ Solid Low-Z, e.g. Be (JET, move away from graphite)

¥ Solid High-Z  (Mo in C-Mod)

¥ Liquid Surfaces, e.g. Li, FLIBE, etc.(no MFE devices yet,  Li Divertor  CDX-U)

¥ Disruption mitigation, e.g. He puff, solid pellets (several)

4.  Develop physics understanding of core-edge coupling
¥ Diagnosis and modeling of transport in presence of open field lines,

particularly J, no, and flow in edge (RFP, Tokamaks, Stellarator, ST)

¥ Deep core fueling, wall conditioning, materials effect on core (particularly
important in emerging concepts and steady-state devices)

¥ Control heat and particle flux transients, e.g. ELMs  (all)
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Steady State Issues in the MFE Roadmap
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Achieving Steady State MFE Plasmas

Two Key Issues (currently limiting progress toward Steady
State MFE):

¥ Plasma Control
to achieve and sustain a high-performance plasma
configuration.

¥ Power and Particle Handling
compatible with a high-performance plasma
configuration.

¥ These issues are serious-- complementary approaches
are needed for a successful resolution
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Key Plasma Control Opportunities

Current profile control to prevent profile evolution to unstable configuration.

¥ Near term- complementary approaches:
Ð NBI+ EC+bootstrap in AT ( DIII-D, next 3 years).
Ð ICRF+LH+bootstrap in AT (C-Mod, 2002-08)

¥ Longer term: NSTX (2001+), KSTAR (2004+), etc.

Helical fields and 3D shaping for disruption suppression.

¥ Stellarator PoP program (proposed ). Complementary approaches:
Ð   High-bootstrap AT-like approach: NCSX QA, high β PoP experiment.
Ð   Low- bootstrap approach (CE-level test): QOS experiment.

MHD mode control for steady-state, high-beta scenarios.

¥ Control NTM with EC, RWM with feedback coils in AT. (DIIIÐD, next 3 yrs)

¥ Test No-wall ⇒  Wall performance gains in ST (NSTX)

¥ Stabilize kinks with resistive shell in RFP. (CE devices)
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Key Plasma Control Opportunities, contÕd.

Current drive for startup and sustainment

¥ CHI+HHFW+NBI+bootstrap in ST (NSTX next 3-4 years).

¥ CHI in Spheromak (SSPX, next 3 years)

¥ OFCD in RFP (theory opportunity now; test in MST, next ~5 years)

¥ Rotating fields in FRC (U.ÊWash).

Local turbulence and transport control
 ⇒⇒⇒⇒  control pressure, bootstrap profiles; stability margins

¥ RF-driven flow shear most likely tool, e.g. MC-IBW in C-Mod (now).

More ideas exist; scientific and technological innovations are

urgently needed
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Burning Plasma in the MFE Roadmap
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Why a Burning Plasma?

¥ The excitement of a magnetically-confined burning plasma
experiment stems from the prospect of investigating and
integrating frontier physics in the areas of energetic particles,
transport, stability, and plasma control, in a relevant fusion
energy regime. This is fundamental to the development of
fusion energy.

¥ Scientific understanding from a burning plasma experiment
will benefit related confinement concepts, and technologies
developed for and tested in such a facility will benefit nearly
all approaches to magnetic fusion energy.
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Frontier Physics to Investigate and Integrate in a Self-Heated Plasma

¥ Energetic Particles
Ð Collective alpha-driven instabilities and associated alpha transport.

¥ Transport
Ð Transport physics at dimensionless parameters relevant to a reactor

regime (L/ri)
* : scaling of microtubulence, effects on transport

barriersÉ

¥ Stability
Ð Non-ideal MHD effects at high L/ri:  resistive tearing modes, resistive

wall modes, particle kinetic effectsÉ

¥ Plasma Control
Ð Wide range of time-scales: feedback control, burn dynamics, current

profile evolution

¥ Boundary Physics
Ð Power and particle handling, coupling to core

*L/ri is the system size divided by the Larmor radius.
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Scientific Transferability

A well-diagnosed, flexible burning plasma experiment will address a broad
range of scientific issues and enable development and validation of
theoretical understanding applicable in varying degrees to other magnetic
concepts

¥ Energetic particle density gradient driven instabilities

¥ Transport and burn control techniques

¥ Boundary Physics, power and particle handling issues
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Burning Plasma Opportuni t ie s

¥ The tokamak is technically ready for a high gain burning
plasma experiment

¥ The US has exciting opportunities to explore BP physics by:
Ð Pursuing burning plasma physics through collaboration

on potential international facilities (JET Upgrade,
IGNITOR and ITER-RC)

Ð By seeking a partnership position, if the ITER
construction proceeds

Ð Continued design/studies of moderate cost burning
plasma experiments (e.g., FIRE) capable of exploring
advanced regimes

Ð Exploiting the capability of existing and upgraded
tokamaks to explore and develop advanced operating
regimes suitable for burning plasma experiments.
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Magnetic concepts in the MFE Roadmap
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The Magnetic Concept Portfolio

High BT, q>1 Concepts (development status)
Ð Conventional tokamak (PE)
Ð Advanced tokamak (PE)
Ð Electric Tokamak (CE)
Ð Stellarator (PE)
Ð Compact stellarator (PoP proposed)
Ð Spherical Torus (PoP)

Challenge: Optimize stable, steady-state, high-performance
plasma using 2D and 3D shaping, MHD stability control, and
profile control.

Low BT, q<1 Concepts
Ð Reversed Field Pinch (CE; PoP proposed)
Ð Spheromak (CE)
Ð Field-Reversed Configuration (CE)

Challenge: Demonstrate adequate confinement for fusion energy
and explore techniques to improve confinement and extend
pulse duration.

CE

PoP

FED

PE

Concept Exploration

Proof of Principle

Performance Extension

Fusion Energy Development
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Conventional Pulsed Tokamak (presently at PE)

¥ Prospective Fusion Energy Benefits
Ð Provides testbed for developing technology and generic fusion energy

science
Ð Demonstrated stability and confinement
Ð Mature experimental database, performance nearest goal of fusion

energy

¥ Issues
Ð Must avoid and mitigate disruptions and ELMS at operating β to

reduce forces and heat load
Ð Large size and cost
Ð Pulsed operation: cyclic heat and stress loads, requires energy

storage

CE

PoP

FED

PE
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Advanced Tokamak (AT)  (presently at PE)

¥ Prospective Fusion Energy Benefits
− Steady state via high bootstrap current fraction

⇒  reduced cyclic stress
− High performance at lower IP

⇒   reduced capital costs, reduced disruption loads
− Builds on extensive tokamak database & understanding

• Issues
− Need to develop profile control & feedback stabilization to sustain

equilibrium, stabilize MHD modes
− Must avoid/mitigate disruptions and ELMs at high β
− Compatibility with edge particle and power handling strategies

CE

PoP

FED

PE
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Spherical Torus  (ST)   (presently at PoP)

¥ Prospective Fusion Energy Benefits
Ð Reduced B, high β  ⇒   reduced capital costs, simpler maintenance
Ð Steady state via high bootstrap current fraction
Ð Predicted intrinsic turbulence stabilization
Ð May provide near-term neutron source

¥ Issues
Ð Need to develop non-inductive current ramp-up & sustainment
Ð Center column resistive losses & radiation effects
Ð Need to develop profile control & feedback stabilization to sustain

equilibrium, stabilize wall modes
Ð High divertor heat loads
Ð Must avoid/mitigate disruptions

CE

PoP

FED

PE
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Compact Stellarator  (CS) (proposed for PoP)

¥ Prospective Fusion Energy Benefits
Ð MHD stability, improved disruption stability and very low disruption

loads, very low recirculating power by  3D magnetic field shaping

Ð Reduced development costs by combining stellarator & tokamak
characteristics & advantages at aspect ratio ~ 3 - 4

¥ Issues
Ð Demonstrate β-limit, low disruption loads & adequate confinement at

low aspect ratio
Ð Compatibility with power and particle handling scheme
Ð Non-planar, more costly coils. Adequate coil-plasma spacing for

reactors

CE

PoP

FED

PE
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Reversed Field Pinch (RFP)   (proposed for PoP)

¥ Prospective Fusion Energy Benefits
− Reduced capital costs due to low B on coils, high engineering β
− Do not need superconducting coils

¥ Issues
Ð Must reduce magnetic turbulence
Ð Must develop method to efficiently sustain all the current (no

significant bootstrap current)
Ð Need to stabilize kink/resistive wall modes
− Must develop reactor relevant power & particle handling

CE

PoP

FED

PE
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Spheromak  (presently at CE)

¥ Prospective Fusion Energy Benefits
− Very simple compact geometry

⇒  reduced development capital costs
− Possible sustainment by helicity injection

• Issues
− Helicity injection may produce excessive magnetic turbulence

⇒  plasma transport
− Need to stabilize kink/resistive wall modes
− Need to develop adequate power and particle handling, impurity

control

CE

PoP
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PE
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MFE Provides a Path to an Optimized Energy Source

¥ The portfolio of magnetic configurations provides an opportunity to
pursue a broad range of important scientific issues for Fusion Energy

¥ The development of physics understanding with predictive capability
leads to rapid progress in the science base for Fusion energy and rapid
progress in the individual magnetic configurations

¥ A burning plasma experiment offers the prospect of investigating and
integrating frontier physics in the areas of energetic particles, transport,
stability, and plasma control in a relevant fusion energy regime.

¥ Scientific understanding and innovation are key features of the
magnetic fusion energy program.  Together these are leading to
attractive configurations for the production of fusion energy.


