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Topics

 What have we learned about ion confinement from tokamak experiments?
25 years of non-DT experiments across a wide range of machines

4 machine-years of DT experiments in TFTR and JET

» Are there ways to exploit this experience in a next step?



Conventional Tokamaks Confine Energetic lons Well

Neutral beam and minority ICRF heating depends on this
PLT first demonstrated hot-ion (T, ~ 7keV) operation with NBI (1978)

very successful in many tokamaks

J.F. Clarke investigated ignition with T, > T, [Nucl. Fusion 20 (1980) 563]
neoclassical ions: tg[s] = 0.73 | [MA]? T [keV]** n[10*°m™]*
Alcator scaling for electrons: 1g.[s] = 0.76 a[m]* n[10°°m~]
[] nT for ignition reduced by factor ~2 with T, = 30keV; T, = 25keV

Discovery of L-mode scaling in 1980’s quelled enthusiasm

both electrons and ions worse than originally hoped but

Hot-ion modes continued to produce the best fusion performance
L-mode, H-mode, ERS/ERS/OS; limiter/divertor

DT experiments showed good confinement of fusion alpha-particles



Comparison of Achieved Plasma Parameters with ITER

Central values ITER! TFTR JET?

Plasma composition DT DT DT

Mode ELMy H-mode Supershot Hot-ion ELM-
free H-mode

N, [10°°m™] 1.3 1.02 0.42

Npr [107°m™] 0.8 0.60 0.35

Nye [107°M™] 0.2 0.002

T, [keV] 19 40 28

T, [keV] 21 13 14

Z o 1.8 1.8 2.1

Pt IMPA] 0.8 0.75 0.37

P, [MWm™] (source) 0.5 0.45 0.14

P..x [MWmM™] 0 3.4 0.8

Y ITER Final Design Review Document

2 A. Gibson et al. Phys. Plasmas 5 (1998) 1839

» Confinement and pulse length are the remaining issues!
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DT Plasmas are NOT the Same as Their D Progenitors

 There was a pronounced isotope scaling of confinement in TFTR
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 JET H-modes showed positive mass scaling of pedestal, negative in core
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e Trends are not consistent with naive Bohm or gyro-Bohm scaling but

« Can be modeled by invoking turbulence suppression by ExB shear



Isotope Scaling Changed Constraints on DT Operation
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« TRANSP had predicted a DT:DD power ratio of ~180 at constant T; (1990)
 Needed to operate at higher |, B; to accommodate higher Pyg, T,
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Substantial Direct Alpha Heating of lonsfor T > 15 keV

Ne = 1.0 x 1020m'3, NpT = 0.9 x 1020m'3, Zeff =1.50, Zimp =6.0

0.5 IS L L I I B B B L B 2.0
” |
c n |
2 04+ _
E B — 1.5 g
= B - ®
3 0.3 - 4 8
S B =
o - —1.0 2
g Lr 1z
o 0.2 - =
« - 4 ©
© B »
- — — 05 —
o
S 5 |
LL |

0.0 B | | | | | | | | | | | | | | | | | | | | | | | | 0.0

0 10 20 30 40 50

Electron temperature (keV)

MGB / UFA-BPW /001211-3 %P P Pl

PRINCETON PLASMA
PHVSILS LABORATORY



Good lon Confinement Produces Hot-lons at Ignition
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* Npr: Ny :NL:Nc=0.80:0.05:0.05:0.01 (based on TFTR experience)
P,and P, On° [ T,/T,independent of density at ignition
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Penalty is Higher (., and [B,/Bi:
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« Cannot simultaneously minimize nT and 3., at ignition
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Regime Expands for High-Q with Preferential lon Heating

° Q - 1Ov I:)i,ext / I:)e,ext — 2
T/l = 5 2 1
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Convective Losses Dominate in Core of Supershots
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e lonthermal flux: q; = —n; x;kUI;+ CKT.I;; I;= particle flux
C ="~/, for uniform losses (= average patrticle energy + p.dV work)
C = 3/, for supershots consistent with energy dependence of D.
o Convective losses probably too high in standard supershots to ignite, but
Balance of conduction and convection in core not well determined



ERS Plasmas Combine Low X, with Greatly Reduced D .
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« Flux balance effective X: g = - n-X.+UT (includes convected heat flow)

* X. reduced near q,,, but increased inside
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Construct Simple 1-D Solution for a Hot-lon Q = 10 Plasma
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¢ <P;>=0.45 MWm® (ITER: 0.75); 1c = 2.7 s (ITER: 5.8 s for ignition)



Embodiment of a Hot-lon Q = 10 Plasma

e From 1-D calculation: <p> =4/, (<P> + <P_,>) T = 0.25 MPa

 Choose moderately conservative assumptions
Inverse aspect ratio: € = 1/3

Elongation: b/a=«k = 1.6
Engineering safety factor: q.= (1/y,) (1 + k) eaB/Il = 3
Troyon-normalized-B: B, =10°<B>a B/l = 80m<p>a/Bl = 2

e Calculate
Toroidal field: B=56T

Ratio of plasma current to minor radius: |1/ a=5.5 MAm™
Fora=15m,R=45m,| = 8.2MA O P, = 150MW, P_, = 15MW

Hirer-gop = 3.4
Would need %, ~ 0.2 m?s™ and . ~ 0.8 m?s™ for r/a < 0.6

* This is within the bounds of what might be achievable
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Conclusions and Future Directions

 We have to use DT plasmas ("the real thing") if we are interested in fusion

* We should re-examine approaches to ignition in regimes than the
“traditional” ELMy H-mode route

* Hot-ion regimes have produced the best performance in all large tokamaks
and are not incompatible with high-Q and, possibly, ignition in DT

|t IS quite conceivable that a hot-ion mode is a stable self-organized state
of a predominantly self-heated tokamak plasma

* In the meantime, study hot-ion regimes in large tokamaks

mechanism: sheared flow, T./T.> 1, L, [1 theory progress
Is strong central fueling necessary? [J reduced D regimes
MHD and TAE stability margins [1 optimize r.m.s. pressure
Size scaling in comparable regimes [1 controlled experiments
put effort into controlling what matters [1 edge control
Investigate alpha channeling [1 improves prospects
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