Boundary Plasma Issues in Burning Plasma Science

C S Pitcher, MIT PSFC

Issues present in any magnetic fusion configuration:

- 1. wide dispersal of power
- 2. high divertor gas pressures
- 3. eliminate impurity production
- 4. screening of impurities
- 5. burning plasma experiment?

(1) Wide Dispersal of Power

- parallel power density (q_u) flowing in the SOL in nextstep devices is a serious issue
- material surfaces can handle (5 MW m⁻²) steady-state with active cooling, perhaps 20 MW m⁻² pulsed
- divertor plate and magnetic geometry buys factor ~ 100, i.e. $q_u \sim 0.5$ GW m⁻² steady-state, $q_u \sim 2.0$ GW m⁻² pulsed
- c.f. ITER, $q_u \sim 1$ to 2 GW m⁻², <u>C-Mod</u> ~ 0.5 GW m⁻², <u>DIII-D</u> ~ 0.2 GW m⁻²
- in steady-state (> secs), reduce q_u by ~ 4 by divertor radiation processes (detached or partially detached), i.e. impurities needed (at least in the divertor → screening)
- <u>pulsed</u> (~ secs), can handle power, particularly if strike points are swept (BPX), but T_t will be high \rightarrow impurity production, high Z_{eff} (not desirable mode of operation)
- we know a lot more now than during the BPX design!

(1) Wide Dispersal of Power/(cont)

- high recycling or detached regimes essential:
 - elevated divertor radiation
 - results in high divertor plasma/neutral densities
- criterion for high recycling and cold divertor, $T_t \sim 5 \text{ eV}$ (a prerequisite for detachment):

$$\frac{L^{4/7} n_u^2}{q_u^{10/7}} > 3 \times 10^{29}$$
 (Slunits)

• this is essentially a collisionality parameter:

collisional \rightarrow develop parallel gradients

(1) Wide Dispersal of Power/(cont)

• most important parameter: power width λ_{P}

$$q_u \sim \frac{P_{SOL}}{\lambda_P}$$

• λ_P determined by relative rates of cross-field (χ_{\perp}) and parallel heat transport (Spitzer conductivity):

$$\lambda_{\rm P} \sim \frac{(n_u \chi_{\perp})^{7/9}}{P_{\rm SOL}^{5/9}}$$

- q_u at high power and especially in H-mode rises strongly: i.e. as $P_{SOL} \uparrow$ and $\chi_{\perp \downarrow}$, then $\lambda_P \uparrow \uparrow$
- we have very little solid scaling for χ_{\perp} amongst different machines \Rightarrow a real need from present experiments!

(1) Wide Dispersal of Power/(cont)

ELMs

- ELMs exhaust power in short periods of time (< 1 ms)
- Type I: $\Delta E/E = 0.02$ to 0.06, gives 2 to 6 MJ m⁻² (ITER) on divertor plate, significant erosion expected above 1.5 MJ m⁻²
- mitigating factors: radiation (non-coronal)
 - λ_P broadening
- probably depends on details, particularly density, impurity content, etc ⇒ research on present experiments needed

(2) High Divertor Gas Pressures

- while maintaining low main chamber pressure for Hmodes (tight baffling??)
- allows efficient remove helium ash pumping to: - induce SOL flow towards divertor
 - control density
- helium exhaust time, i.e. τ_{He} , limited by extraction rate at the edge (maybe not with ITB)
- present results are encouraging: $\tau_{He} < 10 \tau_{E}$
- scaling to reactor is favorable, i.e. τ_{He} ~ a , τ_{E} ~ a^2

(3) Eliminate Impurity Production

- high recycling or detached regime (T_t < 5 eV) will ensure target plate physical sputtering is small
- chemical sputtering of carbon a serious issue (no energy threshold), existing graphite machines rarely have Z_{eff} < 1.5 ⇒ avoid graphite (also essential to avoid tritium inventory problems through co-deposition)
- throat region is interface between energetic plasma and neutrals ⇒ potential for CX sputtering (perhaps use high Z material here, has high energy threshold)
- interaction at walls of tenuous plasma:

1.how does plasma reach wall? (rapid \perp transport?)

2. can dominate core impurity contamination

3. volatile impurity gases reduced with boronization

(4) Screening of Impurities

- we need impurities to radiate power:
 - 1. mantle (~ 10% to 50% in present machines) not desirable since this means (a) core contamination (b) reduction of P_{SOL} (c) confinement degradation
 - 2. divertor highly desirable
- how to have divertor enrichment ($\eta \equiv c_{gas}/c_{plasma}$) for impurities (including helium)?
- flow entrainment to fight thermal force:
 - <u>natural</u>: rely on the relative mfp's of the impurity atoms compared with the hydrogenic atoms,
 - (a) helium dilution, 0.1 < η_{He} < 0.8
 - (b) N, Ne, Ar strong enrichment, $\eta_z = 5$ to 20
 - 2. generate flow: into the divertor,
 - (a) strong divertor pumping with main chamber fuel puffing
 - (b) neutral gas manipulation, e.g. plate/baffle geometry, by-passes
 - validate present codes for application to the Next-Step

(5) Why do we need a Burning Plasma Experiment?

because....

 $\lambda_{P,}$ ELMs, main chamber recycling \Rightarrow we really cannot predict these with any certainty