## **Characteristics of an Economically Attractive Fusion Power Plant**

## **Farrokh Najmabadi** University of California San Diego

Fusion: Energy Source for the Future? AAAS Annual Meeting February 19, 2005

Electronic copy: http://aries.ucsd.edu/najmabadi/ ARIES Web Site: http://aries.ucsd.edu/ARIES





**Elements of the Case for Fusion Power Were Developed through Interaction with Representatives of U.S. Electric Utilities and Energy Industry** 

- > Have an economically competitive life-cycle cost of electricity
- Gain Public acceptance by having excellent safety and environmental characteristics
  - $\checkmark$  No disturbance of public's day-to-day activities
  - $\checkmark$  No local or global atmospheric impact
  - $\checkmark$  No need for evacuation plan
  - ✓ No high-level waste
  - ✓ Ease of licensing

#### > Reliable, available, and stable as an electrical power source

- $\checkmark$  Have operational reliability and high availability
- ✓ Closed, on-site fuel cycle
- ✓ High fuel availability
- $\checkmark$  Capable of partial load operation
- $\checkmark$  Available in a range of unit sizes

Low-activation material



## **Portfolio of MFE Configurations**

#### **Externally Controlled**



# 

Self Organized

#### **Example: Stellarator**

Confinement field generated by mainly external coils Toroidal field >> Poloidal field Large aspect ratio More stable, better confinement

## **Example: Field-reversed Configuration**

Confinement field generated mainly by currents in the plasma
Poloidal field >> Toroidal field
Small aspect ratio
Simpler geometry, higher power density

## **Portfolio of IFE Configurations**



Liquid Walls: HYLIFE II



## **ARIES-AT** is an attractive vision for fusion with a reasonable extrapolation in physics & technology

\*

\*

\*

\*

\*



## A high-performance plasma should have a high power density & a low recirculating power fraction

#### **Requirement: Establish and maintain the magnetic bottle**

#### External magnets:

 $\checkmark$  Superconducting: size and cost

✓ Normal conducting (e.g., copper): power consumption

#### Maintenance of plasma profiles (mainly plasma current)

- ✓ Inductive (transformer action): non-stationary
- ✓ Non-inductive through Neutral beams, microwave, ...: Inefficient

#### ≻Key parameters:

- ✓ **Plasma** β (ratio of plasma pressure to magnetic pressure) Non-dimensional parameter  $β_N$  is a measure of plasma performance
- ✓ Current-drive power P<sub>CD</sub>

## A dramatic change occurred in 1990: Introduction of Advanced Tokamak

- Our vision of a fusion system in 1980s was a large pulsed device.
   Non-inductive current drive is inefficient.
- Some important achievements in 1980s:
  - ✓ Experimental demonstration of bootstrap current;
  - $\checkmark$  Development of ideal MHD codes that agreed with experimental results.
  - Development of steady-state power plant concepts (ARIES-I and SSTR) based on the trade-off of bootstrap current fraction and plasma β

**ARIES-I**:  $\beta_N = 2.9$ ,  $\beta = 2\%$ ,  $P_{cd} = 230$  MW

#### **Reverse Shear Regime**

- Excellent match between bootstrap & equilibrium current profile at high  $\beta$ .
- ► **ARIES-RS** (medium extrapolation):  $\beta_N = 4.8$ ,  $\beta = 5\%$ ,  $P_{cd} = 81$  MW (achieves ~5 MW/m<sup>2</sup> peak wall loading.)

➤ ARIES-AT (aggressive extrapolation):  $\beta_N = 5.4$ ,  $\beta = 9\%$ ,  $P_{cd} = 36$  MW (high β is used to reduce peak field at magnet)

## **DT Fusion requires a T breeding blanket**

**Requirement:** Plasma should be surrounded by a blanket containing Li

 $\mathbf{D} + \mathbf{T} \rightarrow \mathbf{H}\mathbf{e} + \mathbf{n}$ 

 $n + {}^{6}Li \rightarrow T + He$ 

 $D + {}^{6}Li \rightarrow He + He$ 

- > DT fusion turns its waste (neutrons) into fuel!
- Through careful design, only <u>a small fraction</u> of neutrons are absorbed in structure and induce radioactivity
  - ✓ Rad-waste depends on the choice of material: Low-activation material
  - ✓ Rad-waste generated in DT fusion is similar to advanced fuels (D-<sup>3</sup>He)
  - ✓ For liquid coolant/breeders (*e.g.*, Li, LiPb), most of fusion energy (carried by neutrons) is directly deposited in the coolant simplifying energy recovery

#### > Issue: Large flux of neutrons through the first wall and blanket:

✓ Need to develop radiation-resistant, low-activation material:
 Ferritic steels, Vanadium alloys, SiC composites

## **ARIES-AT: SiC Composite Blankets**

#### **Outboard blanket & first wall**

- Simple, low pressure design with SiC structure and LiPb coolant and breeder.
- Innovative design leads to high LiPb outlet temperature (~1,100°C) while keeping SiC structure temperature below 1,000°C leading to a high thermal efficiency of ~ 60%.
- > Simple manufacturing technique.
- > Very low afterheat.
- > Class C waste by a wide margin.



## The ARIES-AT Utilizes An Efficient Superconducting Magnet Design

- ➢ On-axis toroidal field: 6 T
- ➢ Peak field at TF coil: 11.4 T
- TF Structure: Caps and straps support loads without inter-coil structure;





#### **Superconducting Material**

- Either LTC superconductor (Nb<sub>3</sub>Sn and NbTi) or HTC
- Structural Plates with grooves for winding only the conductor.

## **Use of High-Temperature Superconductors Simplifies the Magnet Systems**

- HTS does offer <u>operational</u> advantages:
  - ✓ Higher temperature operation (even 77K), or dry magnets
  - ✓ Wide tapes deposited directly on the structure (less chance of energy dissipating events)
  - ✓ Reduced magnet protection concerns





#### Epitaxial YBCO

Inexpensive manufacture would consist on layering HTS on structural shells with minimal winding!

## Modular sector maintenance enables high availability



**ARIES-AT elevation view** 

- ➢ Full sectors removed horizontally on rails
- Transport through maintenance corridors to hot cells
- Estimated maintenance time < 4 weeks</p>





**Our Vision of Magnetic Fusion Power Systems Has Improved Dramatically in the Last Decade, and Is Directly Tied to Advances in Fusion Science & Technology** 



#### Major radius (m)

Estimated Cost of Electricity (c/kWh)

## **Radioactivity Levels in Fusion Power Plants Are Very Low and Decay Rapidly after Shutdown**



- SiC composites lead to a very low activation and afterheat.
- All components of ARIES-AT qualify for Class-C disposal under NRC and Fetter Limits. 90% of components qualify for Class-A waste.



## **Fusion Core Is Segmented to Minimize the Rad-Waste**



## **Generated radioactivity waste is reasonable**

> 1270 m<sup>3</sup> of Waste is generated after 40 full-power year (FPY) of operation (~50 years)

- $\checkmark$  Coolant is reused in other power plants
- $\checkmark$  29 m<sup>3</sup> every 4 years (component replacement)
- ✓ 993 m<sup>3</sup> at end of service
- Equivalent to  $\sim 30 \text{ m}^3$  of waste per FPY

✓ Effective annual waste can be reduced by increasing plant service life.



## IFE Power plant based on Lasers, Direct Drive Targets and Solid Wall Chambers



Modular, separable parts: lowers cost of development AND improvements

- Conceptually simple: spherical targets, passive chambers
- Builds on significant progress in US Inertial Confinement Fusion Program



## Advances in plasma physics has led to a dramatic improvement in our vision of fusion systems

- Attractive visions for tokamak exist.
- The main question is to what extent the advanced tokamak modes can be achieved in a <u>burning plasma (e.g., ITER)</u>:
  - ✓ What is the achievable  $\beta_N$  (macroscopic stability)
  - ✓ Can the necessary pressure profiles realized in the presence of strong  $\alpha$  heating (microturbulence & transport)
- Attractive visions for ST and stellarator configurations also exist
- Similarly, inertial fusion energy target physics has made tremendous progress:
  - $\checkmark$  NIF will test ignition and high gain
  - ✓ New opportunities, e.g., fast ignition

## Fusion "technologies" are the pace setting element of fusion development

- Pace of "Technology" research has been considerably slower than progress in plasma physics.
- R&D in fusion power technologies (fusion engineering sciences) have been limited:
  - ✓ Experimental data is mainly from Europe (and Japan), but their program focus is different.
- Most of "technology" research has been focused on ITER (real technology).