MHD Stability of Axisymmetric Plasmas In Closed Line Magnetic Fields

Andrei N. Simakov¹, Peter J. Catto¹ Jesus J. Ramos¹, R. J. Hastie²

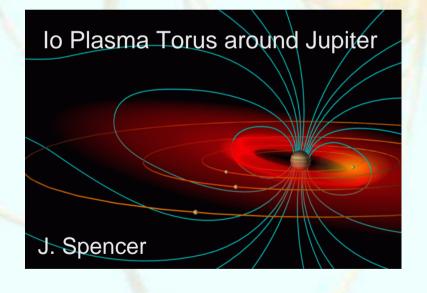
¹MIT Plasma Science and Fusion Center, U.S.A. ²Culham Science Center, U.K.

APS April Meeting 2003 Philadelphia, Pennsylvania April 5th – 8th, 2003

Motivation

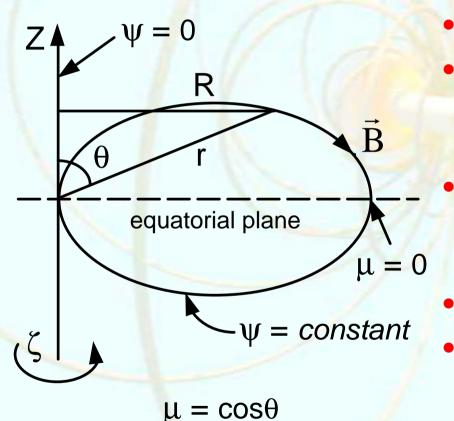
Astrophysical Plasmas:

dipolar fields of stars and planets can confine high- β plasma ($\beta \sim 2$ for the plasma in the lo plasma torus)



Levitated Dipole Experiment first plasma this year high density regime: $N \sim 10^{13} \text{ cm}^{-3}$, $T \sim 100 \text{ eV}$, *B*~1 kG, *R*~2.5 m Levitation Magnet Launcher/Catcher Hot Plasma 1/2 Ton Floating Superconducting Charging Magnet (10 K) Coil

Geometry : General Remarks



- Axial symmetry
- Closed field lines
- Flux surfaces, $\psi = constant$, are surfaces of rotation about the symmetry axis, Z
- Equatorial plane symmetry ⇒ symmetric (even) and antisymmetric (odd) modes
- Toroidal equilibrium currents
- Poloidal equilibrium magnetic field $\Rightarrow J_{\parallel} = 0 \Rightarrow$ no kinks
- Unfavorable curvature ⇒ ballooning modes

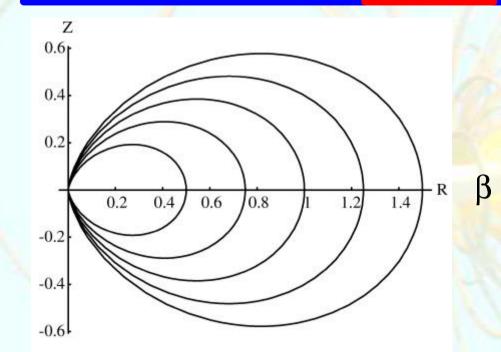
Point Dipole Ideal MHD Equilibrium

- Model: point magnetic dipole
- Krasheninnikov *et al.* (1999) suggested looking for a separable solution to the Grad-Shafranov equation in a form $\Psi = \Psi_0 h(\mu) (R/r)^{\alpha}$ with $h(\mu)$ and $\alpha = \alpha(\beta)$ the eigenfunction and eigenvalue to be determined ($\alpha = 1$ in a vacuum) by boundary conditions
- Plasma pressure is $p = p_0 (\psi/\psi_0)^{2+4/\alpha}$
- 2^{nd} order nonlinear differential equation for $h(\mu)$
- $\beta << 1$ limit: 1 $\alpha = (512/1001) \beta$
- $\beta >> 1$ limit: $\alpha = 1 / \beta^{1/2}$

Flux Surfaces For Different b

R

5



Z

0.6

-0.6

- Flux surfaces for the point dipole
 β = 0 equilibrium by Krasheninnikov et al.
- Flux surfaces
 become more and
 more elongated as β
 β = 20 increases

Ideal MHD Ballooning Stability from Energy Principle

- Modes with toroidal mode number n>>1 are the most unstable
- Integro-differential ballooning equation for shear Alfvén modes:

$$\vec{B} \cdot \vec{\nabla} \left(\frac{\vec{B} \cdot \vec{\nabla} \xi_{\psi}}{R^2 B^2} \right) + 4\pi \left(2 \frac{\vec{\kappa} \cdot \vec{\nabla} p}{R^2 B^2} + \frac{\rho \omega^2}{R^2 B^2} \right) \xi_{\psi} = 16\pi \Gamma \rho \frac{\vec{\kappa} \cdot \vec{\nabla} \psi}{R^2 B^2} \frac{\langle \vec{R}^2 B^2}{1 + 4\pi \Gamma \rho \langle B^{-2} \rangle}$$

field line bending pressure inertia plasma + magnetic compression
• Shear Alfvén modes are stabilized by $\vec{\kappa} = \text{curvature}, \Gamma = 5/3$
> even: field line bending + compression $\xi_{\psi} = \text{radial displacement}$
> odd: field line bending only $\langle ... \rangle = \text{field line average}$

• For the point dipole equilibrium both even and odd shear Alfvén modes are stable for arbitrary β

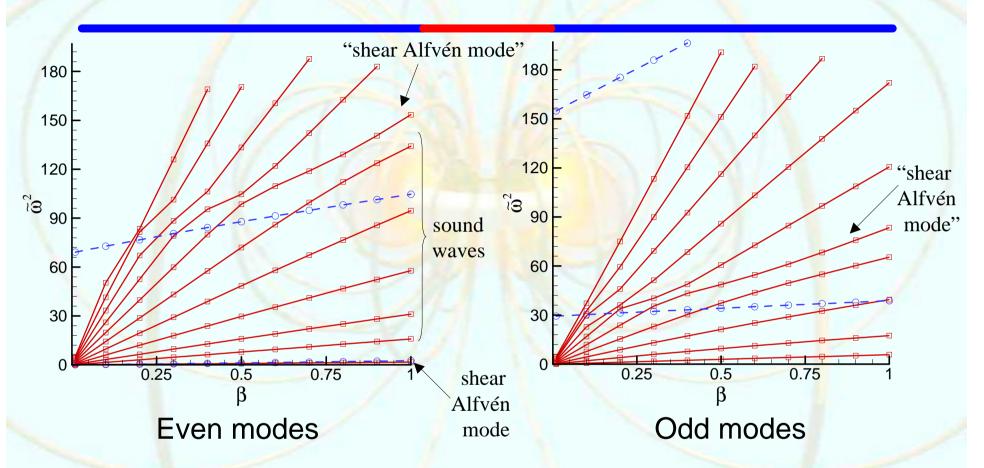
 $\vec{\kappa} \cdot \vec{\nabla} \mathbf{W}_{\kappa}$

Effects of Resistivity on Plasma Stability

- Parallel resistivity reduces stabilizing field line bending energy by allowing plasma to slip through field lines
- This can result in two kinds of "resistive instabilities"
 - > strong purely growing resistive modes at ideal odd mode stability boundaries with $\omega \sim i(\tau_A^{-2/3}\tau_R^{-1/3}) \propto i\eta_{\parallel}^{1/3}$
 - > slow growth/decay of ideally stable MHD modes away from ideal stability boundaries: $Im(\omega) \sim \tau_R^{-1} \propto \eta_{\parallel}, \eta_{\perp}$
- Here, $\tau_A \equiv (4\pi\rho R^2 / B^2)^{1/2}$ and $\tau_R \equiv (4\pi R^2 / c^2 n^2 \eta_{\parallel})$ are Alfvén and resistive times, respectively
- Use linear resistive MHD theory with anisotropic resistivity, $\eta_{\parallel,\perp} = \eta_{\parallel,\perp}(\psi)$, to study such instabilities for the point dipole equilibrium

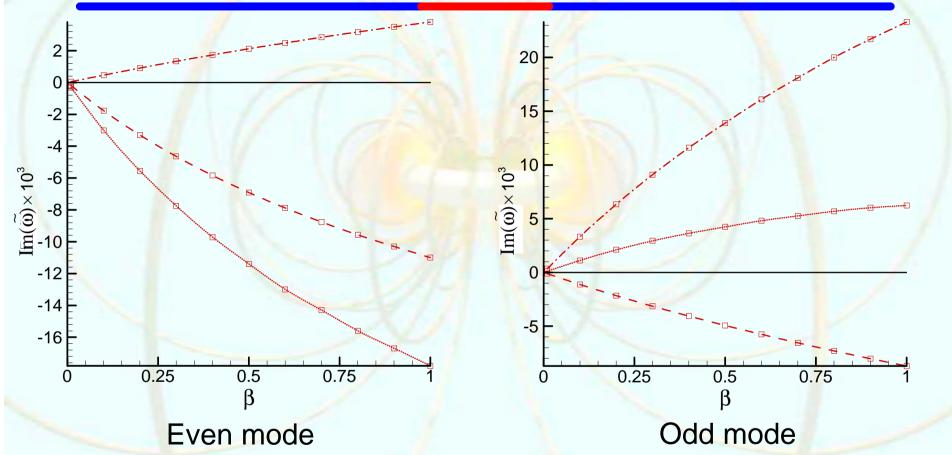
To do everything correctly must retain effects of sound waves

Point Dipole Equilibrium: Ideal Modes



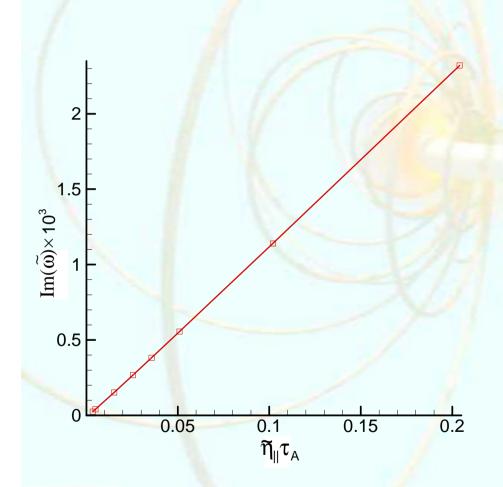
- Frequencies of shear Alfvén modes and sound waves obtained from linearized MHD equations are shown in red
 - Frequencies of shear Alfvén modes obtained from the ballooning equation are shown in blue for comparison

Resistive Growth/Decay Rates for the Lowest Even and Odd Modes



Resistivity results in slow growth or decay of ideally stable modes
 Resistive growth/decay rates due to η_⊥ only, η_{||} only, and η_⊥ + η_{||}, η_⊥ = 1.96 η_{||}, are shown in dashed, dashed-dotted and dotted lines, respectively

Scaling of Resistive Growth Rate for the Lowest Odd Mode with Resistivity



- For the lowest even and odd modes η_{\parallel} alone is destabilizing, η_{\perp} is stabilizing, while the sum is destabilizing for the lowest odd mode and stabilizing for the lowest even mode
- These growth and decay rates scale linear with resistivity:

Im($\tilde{ω}$) ∝ n^2 η_{||}, n^2 η_⊥

Conclusions

- The stability of axially (and up-down) symmetric plasma in a closed poloidal magnetic field is investigated
- Ideal MHD energy principle is used first to derive a ballooning equation for (potentially the most unstable) shear Alfvén modes
- This equation is employed to show that the point dipole equilibrium by Krasheninnikov *et al.* is MHD stable for arbitrary β
- Next, the treatment is generalized to include effects of sound waves and plasma resistivity
- Ideally stable equilibria can be a subject to resistive instabilities with growth rates proportional to resistivity

In particular, parallel resistivity results for the point dipole equilibrium by Krasheninnikov *et al.* in a slow resistive growth of the lowest (always ideally stable) odd mode: $Im(\omega) \propto \eta$

