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Motivation

• Astrophysical Plasmas:
dipolar fields of stars and 
planets can confine high-β
plasma (β ∼ 2 for the plasma 
in the Io plasma torus)
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• Levitated Dipole Experiment
Ø first plasma this year
Øhigh density regime: 

N ~ 1013cm-3, T ~ 100 eV,
B ~ 1 kG, R ~ 2.5 m
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Geometry : General Remarks

• Axial symmetry
• Closed field lines
• Flux surfaces, ψ = constant, 

are surfaces of rotation about 
the symmetry axis, Z

• Equatorial plane symmetry ⇒
symmetric (even) and 
antisymmetric (odd) modes

• Toroidal equilibrium currents
• Poloidal equilibrium magnetic 

field ⇒ J|| = 0 ⇒ no kinks
• Unfavorable curvature ⇒

ballooning modes

ζ

r

R
Z

θ

ψ = constant

equatorial plane

B
r

ψ = 0

µ = cosθ

µ = 0



Point Dipole Ideal MHD Equilibrium

• Model: point magnetic dipole

• Krasheninnikov et al. (1999) suggested looking for a 
separable solution to the Grad-Shafranov equation in 
a form                                   with h(µ) and α=α(β) the 
eigenfunction and eigenvalue to be determined (α=1 
in a vacuum) by boundary conditions

• Plasma pressure is p=p0(ψ/ψ0)2+4/α

• 2nd order nonlinear differential equation for h(µ)
• β << 1 limit: 1 - α = (512/1001) β
• β >> 1 limit: α = 1 / β1/2

αµψ=ψ )/()(0 rRh



Flux Surfaces For Different β

β = 20

• Flux surfaces for the 
point dipole 
equilibrium by 
Krasheninnikov et al.

• Flux surfaces 
become more and 
more elongated as β
increases 

β = 0



Ideal MHD Ballooning Stability 
from Energy Principle

• Modes with toroidal mode number n>>1 are the most unstable  
• Integro-differential ballooning equation for shear Alfvén modes:

• Shear Alfvén modes are stabilized by
Ø even: field line bending + compression
Ø odd: field line bending only

• For the point dipole equilibrium both even and odd shear Alfvén 
modes are stable for arbitrary β
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Effects of Resistivity 
on Plasma Stability

• Parallel resistivity reduces stabilizing field line bending 
energy by allowing plasma to slip through field lines

• This can result in two kinds of “resistive instabilities”
Ø strong purely growing resistive modes at ideal odd 

mode stability boundaries with ω ~ i(τA
-2/3τR

-1/3) ∝ iη||
1/3

Ø slow growth/decay of ideally stable MHD modes away 
from ideal stability boundaries: Im(ω) ~ τR

-1 ∝ η||,η⊥

• Here,                               and                         are 
Alfvén and resistive times, respectively

• Use linear resistive MHD theory with anisotropic 
resistivity, η||,⊥=η||,⊥(ψ), to study such instabilities for the 
point dipole equilibrium 

• To do everything correctly must retain effects of sound 
waves
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Point Dipole Equilibrium: Ideal Modes

• Frequencies of shear Alfvén modes and sound waves 
obtained from linearized MHD equations are shown in red

• Frequencies of shear Alfvén modes obtained from the 
ballooning equation are shown in blue for comparison
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Resistive Growth/Decay Rates for 
the Lowest Even and Odd Modes

• Resistivity results in slow growth or decay of ideally stable modes
• Resistive growth/decay rates due to      only,      only, and   ,

, are shown in dashed, dashed-dotted and  
dotted lines, respectively
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Scaling of Resistive Growth Rate for 
the Lowest Odd Mode with Resistivity

• For the lowest even and 
odd modes      alone is 
destabilizing,       is 
stabilizing, while the sum 
is destabilizing for the 
lowest odd mode and 
stabilizing for the lowest 
even mode

• These growth and decay 
rates scale linear with 
resistivity:
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Conclusions

• The stability of axially (and up-down) symmetric plasma in a 
closed poloidal magnetic field is investigated

• Ideal MHD energy principle is used first to derive a ballooning 
equation for (potentially the most unstable) shear Alfvén 
modes

• This equation is employed to show that the point dipole 
equilibrium by Krasheninnikov et al. is MHD stable for 
arbitrary β

• Next, the treatment is generalized to include effects of sound 
waves and plasma resistivity

• Ideally stable equilibria can be a subject to resistive 
instabilities with growth rates proportional to resistivity

• In particular, parallel resistivity results for the point dipole 
equilibrium by Krasheninnikov et al. in a slow resistive growth 
of the lowest (always ideally stable) odd mode: Im(ω) ∝ η


