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Outline of the presentation

• Introduction to the hohlraum concept

• Description of Sandia National Laboratories’ Z facilty

• Double-ended Z-pinch hohlraum experimental results

• Dynamic hohlraum experimental results

• Radiation science experiments on Z

• Summary of paper
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In contrast to direct drive ICF, in indirect drive ICF
the capsule is driven by soft x-rays generated
in a hohlraum

Features of indirect drive:
• Soft x-rays couple directly to capsule ablation front
• Beams or power sources originating in a restricted solid angle can be converted

into a symmetric x-ray flux onto the capsule
• Symmetry can be tuned by variations in hohlraum to capsule radius ratio
• Ignoring hole losses, the x-ray power flux within a hohlraum is amplified over

the input source power flux by a factor of 1/(1-αααα) where αααα is the wall albedo
– For a 200 eV Au wall hohlraum, a typical value of αααα is 0.8 yielding an amplification

factor of 5
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Hohlraums may be driven with a variety of radiation
sources including lasers, heavy ions, and Z-pinches
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Pulsed-power accelerators with z-pinch loads provide
efficient time compression and power amplification

Target Chamber

11.5 MJ stored energy
19 MA peak load current
40 TW electrical power to load
100-250 TW x-ray power 
1-1.8 MJ x-ray energy

Z
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Two Complementary Approaches to Z-pinch-
driven Fusion Are Being Studied at Sandia

• Two 60 MA pinches
• 380 MJ yield

•  54 MA pinch 
• 530 MJ yield

• hohlraum energetics
• radiation symmetry
• pulseshaping
• preheat
• capsule implosions

Key issues
Double-ended hohlraum

Dynamic hohlraum
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Increasing number of wires greatly increased x-ray
power and the application on Z lead to a renaissance
in z-pinch physics

Sanford et al Phys. Rev. Lett. 77, 5063 (1996)
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The double-pinch hohlraum power balance has
been measured in experiments on Z

• From these measurements of top/bottom hohlraum Tr, P1 is
estimated to be < 4% on most shots
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We diagnose radiation asymmetry on Z with x-ray
point-projection backlighting of an imploding capsule

Z-Beamlet
Laser beam

Target foil
(e.g. Fe)

X-ray film

Z

Example images of capsules driven by
a dominant P2 asymmetry:

Capsule in double
z-pinch hohlraum

- P2

equator-hot
+ P2

pole-hot

Secondary hohlraum
Radius ≡≡≡≡ Rsec

Length ≡≡≡≡ Lsec
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P2 asymmetry can be controlled by varying hohlraum
geometry as demonstrated experimentally on Z

Fit optimum
L/R = 1.66

Equator hot

Pole hot

1% asymmetry
in modes ≤≤≤≤ 8

The P2 asymmetry is zero for a secondary hohlraum L/R = 1.66



 3/14/2003 • RJL • 1

Dynamic hohlraums efficiently couple x-rays to
capsules
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Hohlraum drive temperatures above 200 eV
were measured for the Z dynamic hohlraum
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Core temperature, density, and symmetry diagnosed
in dynamic hohlraum-driven ICF implosions

Wires

2.0 mm diameter, 50 µµµµm CH wall D2-filled
 capsule embedded in 14 mg/cc CH2 foam

Wire impact on foam creates 200 eV
dynamic hohlraum x-ray source

Capsule absorbs ~ 24 kJ x-rays
Implosion creates a 200 µµµµm

diameter hot core core Te ~ 1000 eV
ne ~ 2 x 1023 cm-3

argon emission from ICF capsule

Lyα

Heα

Heβ

Imploded core
(side-on image
through pinch)
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Time-resolved x-ray images demonstrate the
capsule implosion is radiation driven

200 eV hohlraum
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Initial time-resolved tomographic spectroscopy
measurements have been performed
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For shot z860 the electron temperature measured with
line intensity ratios was ~ 1 keV at an electron density
of 2 x 1023 cm-3 deduced from Stark broadening
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Schematic of the neutron diagnostic arrangement
used in these capsule experiments is shown here
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A heavy Pb shield (9000 lbs.) and collimator is required
for neutron time-of-flight measurements on Z
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Fast signals are detected on both side-on and
bottom neutron time-of-flight detectors
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The neutron time-of-flight signals exhibit
respectable reproducibility
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The neutron energy and yield are consistent with
thermonuclear production

• Measured neutron energy from two side-on detectors for z1031 was 2.47 ±±±± 0.12 MeV
• Measured neutron energy from two bottom detectors for z1031 was 2.56 ±±±± 0.13 MeV

• Neutron yield (Shot z1031) of (2.6 ±±±± 1.3) x1010 measured with In activation is
consistent with calculated mass averaged Ti yield of ~2x1010; 1-D predicted clean
yield was ~ 2x1011
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Neutron time-of-flight signal dramatically decreases
when Xe fill gas is added to “null” the production
of thermonuclear neutrons

• On “null shots,” neutron yield measured by Be activation
decreased by more than an order of magnitude

“null”

“null”
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The evidence of thermonuclear neutron production
in Z dynamic hohlraum experiments is convincing

• On “null shots” doped with 0.6 atm Xe gas, the fast neutron time-of-
flight signal is substantially reduced on both side-on and bottom
detectors in agreement with expectations from calculations

• On “null shots”, the neutron yield decreased by more than an order of
magnitude as measured by the Be activation detector in agreement
with an expected decrease by a factor of ~ 20 from calculations
– Any neutron yield from beam target interactions is at the level of the

“null shots”
• On “null shots”, Ar spectroscopy lines are not detected indicating a

plasma of a much lower temperature in agreement with calculations
that predict an electron temperature of 450 eV

• Measured neutron energy (Shot z1031) from side-on detectors was
2.47 ±±±± 0.12 MeV and from the bottom detectors was 2.56 ±±±± 0.13 MeV

– If beam target interactions were responsible for the production of
these neutrons, one would expect a shift in the neutron energy
along the direction of the beam due to reaction kinematics

• The neutron yield (Shot z1031) measured by averaging the In activation
detectors was (2.6 ±±±± 1.3) x 1010 to be compared to the calculated 1D
clean yield of 2 x 1011;  2D effects are expected to decrease this
calculated yield by a factor of ~ 3-10
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In the z-pinch geometry, many basic opacity and/or
radiation science experiments can be conducted
on a single shot

• Pinch x-rays both heat
and backlight the
sample

• The broad pinch x-ray
spectrum backlights
multiple elements over
many nanoseconds

• Long pulse duration

• Multiple samples on a
single shot

• Centimeter-scale
samples

Foam Sample

Aperture Primary HohlraumLine-of-sight
 Hole (REH)

Tungsten Wire Array

Foil Sample
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Such experiments have already been used to
address a variety of radiation science issues

Opacity Measurements
• Na acts as a “thermometer”
• Measure open M-shell Br opacity under known

Te, ne conditions
*   J. E. Bailey et al., submitted to JQSRT (Jan.

2002)

pinch

CH

NaBr
x-rays

pinch

CH

Fe
x-rays

pinch

CH2 foam

Al
x-rays

Mg Radiative Transfer Experiments
• Al and Mg provide Te (x, t)
• Infer radiation propagation through foam

sample
*   G. A. Rochau et al., Proceedings HTPD (2002)

Photoionization Measurements
• Fe ionization states probed by absorption and

emission lines
• Infer photoionization in Fe
*   R. F. Heeter et al., Rev. Sci. Instr. 72, 1224

(2001)
*   R. F. Heeter et al., Proceedings ADNXA (2000)
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Summary

• Indirect drive inertial confinement fusion employs hohlraums to drive
capsule implosions

• These hohlraums may be driven by a variety of soft x-ray radiation
sources that includes lasers, heavy ion beams, and z-pinches

• Capsule symmetry in double-ended z-pinch hohlraums can be controlled
and diagnosed at the few per cent level

• Radiation drive temperatures Tr of ~ 200 eV have been achieved in
dynamic hohlraum experiments on Z
– This dynamic hohlraum drive delivers ~ 24 kJ absorbed energy to a

2-mm diameter, 50-µµµµm-thick CH wall capsule

• From Ar emission spectroscopy, core electron temperatures of ~ 1000 eV
and core electron densities of ~ 2 x 1023 cm-3 have been measured in Z
dynamic hohlraum capsule experiments

• For the first time on a pulsed-power-driven facility, ~ 2 x 1010

thermonuclear neutrons have been produced in Z dynamic hohlraum
experiments

• A large variety of fundamental radiation science experiments are being
conducted on Z that include opacity, radiative transfer, and
photoionization measurements


