Design Point Trade Studies

J.H. Schultz
M.I.T. Plasma Science and Fusion Center

Review of FIRE TF, PF, Structures, VV, PFC's, Fueling and Pumping
Princeton Plasma Physics Laboratory
Princeton, NJ
June 5-7, 2001
Design Point Studies

1. Costing of 4 "Reference" Options
2. Equalization of TF/CS "burn times"
 - optimization of TF/CS interface
3. Scan of A, Bt for "Fixed Mission"
 - Margin=2 and Margin=1
4. Optimization of Bt for Qmax at fixed \(t_{\text{norm}} = t_{\text{flat}} / J \)
5. Mission Margins/Sensitivities
Physics sizing from Uckan, Rutherford/Meade-profile macro

Costing originally from ITER
 - replaced by scalings from FIRE budgetary estimates

\(\text{ITER}_{\text{IPB98}}^\text{H(y,2)} \) scaling

Finds T10 with highest Q - Greenwald, Troyon, \(P_w \) n-constraints
 - including ash-buildup based on assumed \(\tau_p^*/\tau_E \)
Cost equations altered to match Cost Estimate Summary

<table>
<thead>
<tr>
<th>WBS</th>
<th>Description</th>
<th>Cost- $K</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Magnets</td>
<td>120,437</td>
</tr>
<tr>
<td>12</td>
<td>PFCs</td>
<td>63,169</td>
</tr>
<tr>
<td>13</td>
<td>Vacuum vessel</td>
<td>30,906</td>
</tr>
<tr>
<td>14</td>
<td>Cryostat</td>
<td>1,782</td>
</tr>
<tr>
<td>15</td>
<td>Shielding</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Remote Handling</td>
<td>52,597</td>
</tr>
<tr>
<td>17</td>
<td>Support Structure</td>
<td>15,000</td>
</tr>
<tr>
<td>18</td>
<td>In-Vessel Meas. Sys.</td>
<td>629</td>
</tr>
<tr>
<td>20</td>
<td>Heating & Current drive</td>
<td>107,427</td>
</tr>
<tr>
<td>30</td>
<td>Fueling & Vac. Pumping</td>
<td>25,145</td>
</tr>
<tr>
<td>40</td>
<td>Power systems</td>
<td>235,000</td>
</tr>
<tr>
<td>50</td>
<td>Diagnostics</td>
<td>10,975</td>
</tr>
<tr>
<td>60</td>
<td>Central I&C</td>
<td>13,492</td>
</tr>
<tr>
<td>70</td>
<td>Facilities and site</td>
<td>206,035</td>
</tr>
<tr>
<td>80</td>
<td>Machine Assembly, Inst., & Test</td>
<td>22,672</td>
</tr>
<tr>
<td>90</td>
<td>Project Support</td>
<td>157,740</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>1,063,006</td>
</tr>
<tr>
<td></td>
<td>Corrections</td>
<td>14,000</td>
</tr>
<tr>
<td></td>
<td>Contingency (20 %)</td>
<td>215,401</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>1,292,407</td>
</tr>
</tbody>
</table>
\[\tau_{EIPB98} = 0.144 H(y,2) \left(I_p^{0.93} R_o^{1.39} a^{0.58} B_t^{0.15} \kappa^{0.78} AMU^{0.19} n_{e20av}^{0.41} \right) P^{-0.69} \]

Physics	**Engineering**
H(y,2)=1.1 | P_w < 3 MW/m² (n° wall loading)
\(\alpha_N = 0.2 \) | T_{hot,TF} < 373 K
\(\beta_N < 1.6 \% \) | T_{hot,CS} < 300 K
q_{lim} = 3.104 | \(\sigma_{\text{max}} \) (BeCu, 68% IACS) = 700 MPa
\(\tau_{\pi^*}/\tau_E = 6 \) | \(\sigma_{\text{max}} \) (Cu) = 300 MPa
\(f_{\text{Greenwald}} < 0.75 \)
(1) TF/OH interface optimization

\[t_{\text{burn,TF}} = t_{\text{burn,OH}} \] (TF/OH interface optimum for fixed Ro

Subtract 3 s from TF flattop for plasma heating

\[\text{e.g. } 24.5 \text{ s TF flattop} = 24.5 \text{ s I flattop} = 3 \text{ s heat} + 21.5 \text{ s burn} \]

No scaling of \(t_{\text{heat}} \) with plasma parameters

(2) Minimum Ro for "Mission Margin"

Mission: Long-pulse \(\alpha \)-dominated plasmas

Margin=2: \(Q \geq 10; \frac{t_{\text{flattop}}}{\max(\tau_E, \tau_{p*}, \tau_J)} \geq 2 \)

Margin=1: \(Q \geq 5; \frac{t_{\text{flattop}}}{\max(\tau_E, \tau_{p*}, \tau_J)} \geq 1 \)
(3) Parametric scans

Vary R_o vs. A, fixed Margin, B_t

Vary R_o vs. B_t, fixed Margin, A
Alpha margin=Time margin=2 at optimum A=2.0/0.525
Rapid rise in time margin and heating margin off optimum A
All Double Optimization Studies are Bucked & Wedged
M2: Minimum Cost = $1.06 B @ R_o = 1.86 m, A=3.8, B_t=11.5 T
- M2 < $1 B, if phase auxiliary power

M1: Minimum Cost = $0.92 B @ R_o = 1.59 m, A=3.8, B_t=11.5 T
Cost (M$) vs Ro; Subsystem Sensitivity

R_o; $B_t=11.5$ T, $A=3.8$, $q_L=3.1$, not fixed mission

$/R_o$ Sensitivity = 1.01

$/R_o$: Paux, I&C = 0
Magnets=1.64
Basic Machine=1.2510
Buildings=1.14
(1) TF/OH interface optimization

(2) Fix Ro, "Modified Mission Margin"
Margin=2: \[Q=AHAP; \frac{t_{\text{flattop}}}{\max(\tau_E, \tau_p, \tau_J)} = 2\]

(3) Optimize \(T_{i10}\) and \(B_t\) for maximum MI(Ro,A)
 - \(B_t\) as high as possible with magnet constraints
 - Select \(T_{i10}\) to optimize MI with \(n_{eav}\) constraints

(4) Separate spreadsheets for Wedged, B&W designs

(5) Triple optimization well-behaved at low A
A=3.8 best, 1.5 m<\text{R}_o<4$ m;

$Q=10$:\ $R_{\text{omin}}(\text{A}=3.8)=1.85$ m; $(\text{A}=3.5)=1.95$ m

$\text{MI}_{\text{peak}}=1.39$ at $R_o=3.5$ m; $(\text{MI/R}_o)_{\text{max}}=1/m$ (Sens=2.8)
$R_0(Q=10)=1.85 \text{ m B&W, } 2.05 \text{ m Wedged}$

$Q_{opt}(R_0=2 \text{ m})= 22 \text{ B&W, } 8.4 \text{ Wedged}$

$MI_{peak} = 1.39 \text{ for both, but at } R_0=3.75 \text{ m for Wedged}$
Cost (Q=10) = $1.19 B, Wedged; $1.06 B, B&W
MI Sensitivity@$1 B = 0.8 %/%
~ $300 M from Q=10 to Ignition; ~ $125 M Q=5 to 10
Effect of τ_{up}/τ_{auE} on MI

Optimum MI, bucked & wedged vs. Ro (m); A=3.8; $\tau_{up}/\tau_{auE}=6, 10$

Peak MI decreases from 1.39 to 1.02, R_{opt} 3, vs 3.5 m

$R_{omin}(Q=10)$ increases from 1.85 m to 1.90 m
None of these machines has (quite) the same mission. Even (seemingly) identical plasmas, have different engineering margins.

2.14 m ~ $100 M more than 2.0 m
- saves $50 M, because 20 MW, not 30 MW P_{aux}

B&W $50 M$ less than Wedged
1. FIRESALE "tuned" to find smallest fixed-mission tokamaks for wedged or bucked&wedged options

2. Minimum size/cost M(2) machine ~ 1.85 m x $1.06 B
 - < $1 B with site credits or deferred RF
(Achieves all cost/mission objectives: Q=10, τ_{flat}/\tau_J=2, Cost<$1 B)

3. FIRE* costs $50-100 M more than FIRE (MI~0.2 higher)
 - B&W: possible savings of 0.2 m x $130 M @ Q=10

4. Maximum MI for "FIRE-class" machine ~ 1.4
 - limited by alpha poisoning