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Examine turbulence flow field
for evidence of zonal flows:

Turbulence poloidal group velocity
v�= ErxBT + �vD,i

ZONAL FLOWS THOUGHT CRUCIAL TO MEDIATING
FULLY SATURATED TURBULENCE IN PLASMAS

• Predicted to regulate turbulence via fluctuating ErxBT (v�) flows

- Observed in simulations of core and edge turbulence
- Self-generated by turbulence through, e.g., Reynolds stress

• Structure: n=0, m=0, radially-localized electrostatic potential (linearly stable)

- Low-frequency residual zonal flow ( f < 10 kHz)
- Higher-frequency Geodesic Acoustic Mode (10-200 kHz)

Er

Poloidal
Turbulence

(ErxBT)
Flows

~
n/n|ZF << e�/Te|ZF
~

Measurement challenge:



OVERVIEW AND OUTLINE

• Motivation to experimentally characterize zonal flows

• Measurement Technique:

- Density fluctuation imaging with Beam Emission Spectroscopy (BES)
- Time-dependent turbulence flow field:

Time-Delay-Estimation (TDE) analysis techniques  ==>   v�(R,Z,t)

• Flow feature observed:

- Coherent poloidal oscillation
- Poloidally uniform, radially sheared
- Frequency depends on local temperature
- Similar to Geodesic Acoustic Modes (class of zonal flows)

• BOUT simulations exhibit GAM

-  similar frequency to observed flow

• Summary



K. Hallatchek, D. Biskamp,
Phys. Rev. Lett. 86, 1223 (2001), Fig. 1(a)
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3D BRAGINSKII SIMULATIONS OF EDGE-TO-CORE TRANSITIONAL REGIME
EXHIBIT COHERENT ZONAL FLOWS

• Simulated flow profile evolves to
steady, coherent oscillation

• Zonal flow specifically a:
Geodesic Acoustic Mode (GAM)

• Regulates turbulence and transport



BES Viewing
Geometry

DIII-D Tokamak
 Top View

75 KeV Do Neutral Beam
Injector

(Heat, Fuel, Torque)

f/2, 40 mm
lens

Optical
Fibers1 m

BEAM EMISSION SPECTROSCOPY (BES) DIAGNOSTIC MEASURES
LOCAL, LONG-WAVELENGTH (k��I < 1) DENSITY FLUCTUATIONS

Collisionally-excited,
Doppler-shifted

beam fluorescence
Do + e,i Do( )

*
Do +�(n = 3 2,�o = 656.1 nm)

Tunable Wavelength
Interference Filter

Lenses

Remotely Located Spectrometers

Detection System:
- Photodiodes (Q.E.~85%)
- Low-noise, cryogenically-cooled
  pre-amplifiers
- Signal conditioners
- 1 MHz Sampling

- Spatially-localized (�r = �Z = 1 cm)
- Multi-channel (32 currently deployed)
- Long-wavelength: k� < 3 cm-1
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2D CAPABILITY OF BES ALLOWS FOR IMAGING AND APPLICATION
TO TURBULENCE FLOW MEASUREMENT

5.5 cm

7 cm

Expanded View

• Flexible mounting
array allows for
customized channel
setup

• Array can be
radially translated
on shot-to-shot
basis for spatial
scanning
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TWO-DIMENSIONAL IMAGES OF DENSITY FLUCTUATIONS ELUCIDATE
COMPLEX, NONLINEAR INTERACTIONS OF TURBULENT EDDIES

• 1 MHz sampling

• 5 x 6 cm region near
outer midplane
(0.9 < � < 1.05)

• L-mode plasma:

5 MW neutral beams
Upper Single Null
Te ~ 75 eV

Ti ~ 200 eV

ne~1.5x1019 m-3

0 +10%-10%

ñ/n



TURBULENCE MOVIES DEMONSTRATE EDDY INTERACTION

• Poloidal advection
(higher inside)

• Eddy shearing
from flow shear

• Net Outward
particle flux

• Strong nonlinear
interaction of
eddies
(tearing and
congealing)

10 �s/sec, 1 ms record

0 +10%-10%

ñ/n



Radial Correlation Function

Power Spectrum

1.2x10-7

0.8

0.4

0.0

S
pe

ct
ra

 (
<

ñ2 >
/n

2 /k
H

z)

250200150100500

Frequency (kHz)

0.70.60.50.40.30.20.10.0
k��s

98775

1.0
0.8

0.6

0.4
0.2

0.0

C
or

re
la

tio
n

6543210

�r (cm)

Lc,r

0.8

0.4

0.0

-0.4

C
or

re
la

tio
n

1086420

�Z (cm)

TYPICAL CHARACTERISTICS OF TOKAMAK PLASMA TURBULENCE

• Broadband density fluctuation
spectrum

• Decaying radial and
wave-like decaying
poloidal correlation
function

• Correlations lengths:
~ 2-4 cm

Poloidal Correlation Function



FLUCTUATION TIME SERIES EXHIBITS HIGH COHERENCE,
POLOIDAL CONVECTION
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• Average Time Delay ~ 3 �s: 3.5 km/s  poloidal advection of turbulence



TIME-VARYING TURBULENCE FLOWS MEASURED VIA 2D DENSITY
FLUCTUATION MEASUREMENTS WITH BES

Turbulence imaged at 1 MHz
discrete BES channels
deployed on 4x7 grid
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Time Delay Estimation
between poloidally-
adjacent channels:

1) Wavelet-based
cross-phase (��(t))

2) Time-resolved
cross-correlation
(��,max(t))

v�(R, Z, t)
on relevant time scale

(0 < f < 200 kHz)

Spectral and spatial analysis of v�

to search for flow features
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TIME-RESOLVED CROSS-CORRELATION TO PERFORM
TIME-DELAY-ESTIMATION ANALYSIS

v�(t) = �Z/��(t)
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WAVELET METHOD TO PERFORM TIME-DELAY-ESTIMATION ANALYSIS

Wab ( f ,�) = Wa
*( f ,�)Wb ( f ,�)

W (a,�) = f (t)
�•

+•
� �a�

* dt

�(t) = ei� ote�t2 /2

,

�( f ,�) = tan�1 im(W ( f ,�))
re(W ( f ,�))
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Wavelet-based Cross-Correlation yields
temporally and frequency-resolved analysis 

Complex
Wavelet Transform

Cross
Scaleogram

Morlet Wavelet

Time-dependent
cross phase

Time-dependent
time-delay
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v�(t) Spectra

broadband
v-fluctuations

�̃(t) = �� f (t) /2�f

M. Jakubowski, Ph.D., Thesis

U. Wisconsin (2003)
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Edge Profiles

DIII-D EXPERIMENT PERFORMED TO EXPLORE
TURBULENCE FLOWS AND n AND T SCALING

L-Mode Discharges:

IP = 1.2 MA
BT = 2.0 T
PNB = 2.5-7.5 MW

Little or no MHD
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COHERENT VELOCITY OSCILLATION OBSERVED IN
TDE ANALYSIS MEASUREMENTS

Channel-to-channel
time-delay measurements
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�Z
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(Channels offset vertically for clarity)
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• Oscillation in phase

• Amplitude significant
fraction of equilibrium

• Similar flow observed
in decorrelated
turbulence
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POLOIDAL VELOCITY SPECTRA EXHIBIT COHERENT OSCILLATION
WITH LONG POLOIDAL CORRELATION LENGTH

• Highly coherent frequency
-> long-lived structure

�flow >> �turbulence

• High spatial correlation
over > 5 cm

Lc,�|flow >> Lc,�|ñ

• f ~ cs/2�R (12 kHz)

• Consistent with expected
features of a:
Geodesic Acoustic Mode

~~



GEODESIC ACOUSTIC MODES: A BRIEF OVERVIEW

• Electrostatic acoustic oscillation in toroidal plasmas

• Radially localized zonal flow (m=0, n=0)

• Nonuniform poloidal ExB/B2 flow causes pressure asymmetries on a flux surface

• Coupled to an m=1/n=0 pressure perturbation: p=posin(�)

==> restoring force on the flux surface, arising from radial component of the
diamagnetic current, leads to the coherent oscillation

• Frequency:                              (correction terms of order unity)

• Driven by turbulence via Reynold’s stress

~

� � cs /R

References
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FREQUENCY  OF COHERENT V� FEATURE

SCALES WITH LOCAL TEMPERATURE
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0.85 < r/a < 1.0



1.0

0.8

0.6

0.4

0.2

0.0V
�
  S

pe
ct

ra
 (

a.
u.

) 

403020100

Frequency (kHz)

 Te � 65 eV
 Te � 88 eV

109644/51, t=1200-1300, Ch:13/17

0.85 < r/a < 1.0

• Mode frequency increases
with temperature:

- suggests oscillation is a

Geodesic Acoustic Mode:

fGAM = cs/2�R=12 kHz

(TI ~ 240 eV, R = 1.73 m)

FREQUENCY  OF COHERENT V� FEATURE

SCALES WITH LOCAL TEMPERATURE

=
=

• Average frequency of mode
scales with local Te+TI

- Correction factors of
order unity
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Spatial Correlation Functions
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Radial and poloidal phase
shift of v�measurements

• Poloidally, little or no measurable
phase shift, (|m| < 2, possibly m=0)

• Radially, 180o shift in ~3 cm

SPATIAL AND PHASE RELATIONSHIP OF COHERENT V�FEATURE

INDICATES POLOIDALLY-UNIFORM, RADIALLY-SHEARED FLOW

(15 kHz mode)



• Movie derived from
ensemble-averaged,
time-lag cross-correlations

• Exhibits expected spatial
and temporal phase relationship
of zonal flow oscillation

• Radial shear apparent over
observed region

- Poloidally, nearly uniform
flow

• Peak velocity amplitude ~0.5 km/s

TIME-RESOLVED TURBULENCE FLOW FIELD EXHIBITS

ZONAL FLOW CHARACTERISTICS



Oscillation can affect turbulence

and reduce amplitude

EFFECTIVE SHEARING RATE of v�OSCILLATION

CAN AFFECT TURBULENCE

• Approximate RMS magnitude of oscillation:

• Estimate shearing rate:

• Measured turbulence decorrelation rate: �T ~ 1/�c ~ 1x105 s-1

• Comparison: �s < �T , but values are comparable

ṽ� � 500m / s

� s �
dv�
dr

�
2(500m / s)

0.03m
= 0.3�105 s�1

~

~~

~~ ~~ X
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MEASURABLE BICOHERENCE SUGGESTS REYNOLDS STRESS DRIVE

Bicoherence: b̂2 =
n f1

n f2
v�

n f1
n f2

v�v�
��

�
� �

�
�

• Reynolds stress gradient can drive zonal flow:

• Represented as 3-way interaction

• Finite phase coupling of density
fluctuations to v�oscillation

• Suggests Reynolds stress
contribution

v� (r)

t
d

d

d

dr
ṽrṽ�

Drift
Waves

Turbulence

Reynolds
Stress
Drive

Zonal Flow
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POTENTIAL FLUCTUATION MEASUREMENTS  FROM LANGMUIR PROBE
EXHIBIT ~13 KHZ FEATURE
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Potential Fluctuation Power Spectrum

ISAT Fluctuation Power Spectrum

Coherent
Feature

• Semi-coherent potential fluctuation
near separatrix (r/a~0.98)
with Langmuir Probe

• ISAT spectrum (ñ) does not

exhibit similar 13 kHz feature

- 13 kHz feature likely a
low m structure

• Consistent with expectation
that flow oscillation seen
with BES is electrostatic
(ErxBT)

r/a = 0.98

D. Rudakov, R. Moyer, UCSD

r/a = 0.98
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SMALL BUT FINITE DENSITY FLUCTUATION ASSOCIATED
WITH GAM OSCILLATION: NOT PREDICTED THEORETICALLY

ñ / n � 0.3%

Density Fluctuation
• GAMs couple to m=1/n=0 p

• Density fluctuation observed
at v� oscillation frequency

• Not observable near
separatrix

• ñ phase shift: m ~ 10

• Propagates in electron diamagnetic
direction

Phase Shift of ñ vs.
Poloidal Distance

~~

~~

~~

�Z = 6 cm

~



Coherency of poloidally-separated
v�(t) measurements

GAM NOT OBSERVED IN ALL DISCHARGES:
NOT APPARENT IN LOW q95 DISCHARGES
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• Higher-q plasma exhibits
strong GAM oscillation,
lower-q exhibits no hint of
GAM oscillation

• Qualitatively consistent with
theoretical damping rate:

�damp = �GAM exp(-q2)

[Hinton, Rosenbluth, PPCF, 1999]

• Requires further systematic
experimental study for
validation

Suggests that GAM amplitude reduced at lower q95



GAM oscillation in

BOUT at very similar frequency

to measured flow oscillation

• BOUT models boundary-plasma turbulence with modified Braginskii equations
in realistic geometry

• Simulation performed with experimental edge profiles from these discharges

• Coherent GAM observed in simulation as m=0, localized potential fluctuation

BOUT
Spectrum
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BOUT SIMULATION EXHIBITS GEODESIC ACOUSTIC MODE
AT SIMILAR FREQUENCY TO MEASURED V�OSCILLATION

(BOUT frequency resolution limited by
finite computational time window)



GAM oscillation in

BOUT at very similar frequency

to measured flow oscillation

• BOUT models boundary-plasma turbulence with modified Braginskii equations
in realistic geometry

• Simulation performed with experimental edge profiles from these discharges

• Coherent GAM observed in simulation as m=0, localized potential fluctuation
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BOUT SIMULATION EXHIBITS GEODESIC ACOUSTIC MODE
AT SIMILAR FREQUENCY TO MEASURED V�OSCILLATION

 Experiment
BOUT

(BOUT frequency resolution limited by
finite computational time window)



Courtesy: M. Ramisch, U. Stroth, University of  Kiel

B. Scott, Max Planck Institut für Plasmaphysik

DALF3 TURBULENCE SIMULATION ILLUSTRATES
DENSITY TURBULENCE OSCILLATION WITH GAM

Electrostatic potential:
�(r,Z,t)

Density:
n(r,Z,t)

• Drift Alfvén code, DALF3:
nonlinear, 3D flux-tube
fluid simulation of
boundary
turbulence

• GAMs observed,
interact strongly
with turbulence

• Density turbulence
observed to oscillate
with GAM
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POTENTIAL OSCILLATION OBSERVED IN TEXT TOKAMAK WITH HIBP:

ALSO EXHIBITS “GAM” TEMPERATURE SCALING PROPERTIES

• Heavy Ion Beam Probes measures
� and ñ fluctuations

• Radially-localized electrostatic
mode

- Little associated density
fluctuation

• m=0 mode
- Poloidally-separated

multi-point measurements

• Frequency scales as
Geodesic Acoustic Mode

� mode vs. GAM frequency
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Zonal flows (GAMs) observed in DIII-D, exhibit features

consistent with simulations, and are a component of

fully saturated turbulence state

SUMMARY AND CONCLUSIONS

• Time-varying turbulence flows measured by applying TDE to 2D BES data:

- exhibits characteristics of zonal flows (GAMs), crucial to regulating turbulence

• Characteristics of these observed flows (seen 0.85 < r/a < 1.0):

- Coherent oscillation (~15 kHz); frequency scales with Te+TI

- No measurable poloidal phase shift: |m| < 2

- 180° radial shift over 3 cm

- �s ~ 1/�c : may modulate turbulence amplitude

- Possible safety factor dependence: GAMs weaken at lower q?

- Similar zonal flow (GAM) characteristics observed  HIBP data from TEXT

• BOUT simulations:

- Predicts geodesic acoustic mode at similar frequency to measurement



M. Jakubowski, Ph.D., Thesis

U. Wisconsin (2003)
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TRANSFER FUNCTIONS FOR TIME-DELAY-ESTIMATION
DERIVED VIA SIMULATION

• Relates measured (output)
time delay to actual (input)
time delay

• Strongly dependent on:
- velocity magnitude
- density spectrum
- signal-to-noise ratio

• Iterative analysis procedure
required quantify results

• Time-domain more sensitive
at low frequencies, wavelet
method exhibits higher frequency
response



HIBP DATA FROM TEXT: FINITE BICOHERENCE OBSERVED BETWEEN
DENSITY AND POTENTIAL NEAR GAM FREQUENCY

b2( f1, f2 ) =
Ne( f1) ( f2 ) *( f1 + f2 )

2

Ne( f1) 2 ( f2 ) 2 ( f1 + f2 ) 2

� Ne

Ne�

Bicoherence between density and
potential fluctuations

• Finite bicoherence
between � at “GAM”
frequency and broad
band n fluctuations

• Suggests nonlinear
coupling of ñ
fluctuations to
GAM oscillation



• Measurements of radially propagating density fluctuations with k�~0

obtained with Phase Contrast Imaging at DIII-D

- S. Coda S, M. Porkolab, K. H. Burrell, Phys. Rev. Lett. 86, 4835 (2001).

• Increased Reynolds Stress gradient prior to poloidal accelerations and
improved confinement regime from edge probe measurements

- Y. Xu et al., Phys. Rev. Lett. 84, 3867 (2000)

• Increased Bicoherence prior to LH Transition suggestive of Reynolds Stress,
a zonal flow driving mechanism, from edge probe measurements:

- P. Diamond et al., Phys. Rev. Lett. 84, 4842 (2000)
- R. Moyer et al., Phys. Rev. Lett. 87, 135001-1 (2001)
- G. Tynan et al., Phys. Plasmas 8, 2691 (2001)
- C. Holland, IAEA 2002

• Poloidally symmetric (m=0) flows/potential fluctuation nonlinearly coupled
to fluctuations in H-1 Heliac from probe measurements

- M. Shats et al., Phys. Rev. Lett. 88, 045001-1 (2002)

ZONAL FLOW BEHAVIOR INFERRED FROM EXPERIMENTAL OBSERVATIONS



Power Spectrum of
Fluctuation Envelope 

V�OSCILLATION MODULATES TURBULENCE AMPLITUDE

• Density fluctuations frequency—
filtered: 100 < f < 200 kHz (f >> v�)

• Amplitude envelope evaluated;
power spectrum determined

• Lower frequency fluctuations show
modest but less effect from v�oscillation
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• Suggests energy exchange between
waves/fluctuations and GAM flow

(Diamond et al.,

Nuclear Fusion 2002)
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