
COUPLED PEELING-BALLOONING MODES: A MODEL FOR ELMS AND THE
TEMPERATURE PEDESTAL?

 H R Wilson, P B Snyder1 and G T A Huysmans2

EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon,
Oxon OX14 3DB, UK

1General Atomics, PO Box 85608, San Diego CA 92122-5608, USA
2Association EURATOM CEA Cadarache, 13108 St Paul-Lez Durance, France

In this paper we discuss the MHD stability of the tokamak plasma edge, and the possible

implications for ELMs and the temperature pedestal.  ELMs are a particular concern for

Next Step tokamaks (eg ITER) because of the large transient heat loads they can cause,

while the temperature pedestal is important because it has a large influence on the overall

confinement.  The two key MHD instabilities we explore are the kink, or peeling, mode

(current-driven) and the ballooning mode (pressure driven), both of which can be unstable at

moderate to high toroidal mode number, n at the edge [1,2]. Our computational studies will

consider n in the range 5<n<31, spanning the range typically observed to be involved in

ELMs.

When considered individually, the equations describing peeling and high n ballooning

modes can be reduced to a 1D system, but generally these modes couple through toroidicity

and then the mode structure is truly 2D [1]. Thus, in order to analyse moderate to high n

edge MHD modes, we have developed the ELITE code. ELITE is based on the linearised

ideal MHD equations and, for a given n, employs an expansion in poloidal Fourier

harmonics (making use of a ‘straight field line’ angle). The variational energy is expanded in

n-1, retaining the first two orders, from which the set of Euler equations for the radial

variation of the Fourier amplitudes, um, is derived. At high n there is a need to retain many

poloidal Fourier harmonics but, because of the strong effect of field line bending, each um

tends to be localised about its own rational surface (ie where m=nq, q is the safety factor); as

a result, only a limited number of poloidal harmonics are important at each radial position.

ELITE exploits this to allow efficient retention of a large number of poloidal harmonics. We

have performed a careful benchmark with the ideal MHD version of the MISHKA code [3].

A circular cross-section equilibrium was chosen, calculated to be unstable to n=∞ ballooning

modes, and the predictions for the growth rate as a function of n were compared.  Figure 1

shows the good agreement achieved over a range of n>4. Figure 2 shows the mode structure

obtained from ELITE for n=20; Fig 2a shows the radial variation of the individual Fourier

harmonics which clearly illustrates their localised nature, while Fig 2b shows the mode



structure in the poloidal cross-section

(the shaded area indicates the plasma

region analysed by ELITE), confirming

the ballooning nature of the mode.

The benchmarked code ELITE has been

used to explore the edge stability of

shaped tokamak plasmas.  The important

variables which govern stability are the

edge current density and the pressure

gradient. In order to parameterise these

in terms of variables which are more accessible experimentally, we first fix the form of the

density and temperature profiles (the density profile being rather flat, and the temperature

profile being somewhat more peaked, but with a broad pedestal region penetrating ~20% of

the minor radius). An up-down symmetric ‘D’-shaped cross-section plasma was chosen,

having major radius R=3m, elongation κ=1.6 and aspect ratio A=3, and two triangularities,

δ=0.3 and 0.5, were studied. The current profile consists of the sum of Pfirsch-Schlüter,

diamagnetic, bootstrap and Ohmic contributions (the latter two taken from neoclassical

theory, allowing for collisionality corrections), so that the edge current density is largely

determined by normalised pressure, βN, and the pedestal temperature, Tped, while the edge

pressure gradient is parameterised by βN. Thus we can characterise the stability of the

plasma edge in terms of these two parameters. An n=∞ ballooning stability analysis

indicates that this class of equilibria has access to the second stability regime.

Figure 3 shows the results of stability analyses for a range of equilibria, obtained by scaling

the density and temperature profiles to map out a space in Tped- βN. The boundary between
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Figure 2: (a) Plot of radial variation of Fourier amplitudes and (b) mode structure in the poloidal
cross-section for a n=20 ballooning mode in a circular cross-section equilibrium.
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Figure 1: Comparison of growth rate predictions
between MISHKA and ELITE



the squares (unstable) and triangles (stable) represents the stability boundary; n in the range

5<n<31 were considered. Note that Tped is limited by the edge MHD stability, though higher

Tped is tolerable at higher δ. At the lower βN values the eigenfunction is extremely localised

in the last few percent of the plasma minor radius (Fig 4a). This instability is essentially a

peeling mode, driven by the edge current density (higher Tped reduces the edge collisionality,

enhancing the bootstrap current). As βN is increased, two things happen: (1) a higher Tped is

achievable because of the stabilising influence of the Mercier coefficient [1]; (2) the modes

begin to couple strongly to the ballooning mode, and thereby become more radially

extended (Fig 4b). Indeed, for the intermediate n modes, a qualitative WKB analysis

indicates that the radial extent of the mode may be comparable to the pedestal width and

therefore these modes are likely to have a rather deleterious effect on both confinement and

the exhaust power loading.

Turning now to the pressure limiting modes, at higher Tped, βN is limited by intermediate n

modes, typically n~6-8 (Fig 5); note that in this region the finite edge current would be

sufficient to provide second stability access for n=∞ ballooning modes. At lower Tped, βN is

limited by higher n modes, and this is consistent with reduced access to second stability. The
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Figure 4: (a) Mode structure for a n=13 peeling-type mode with Tped=2.2keV, βN=1.5
and (b) for a n=8 coupled peeling-ballooning mode with Tped=3.4keV, βN=2.5
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Figure 3: Stability diagram for peeling-ballooning modes for (a) δ=0.3 and (b) δ=0.5.
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drive for the intermediate n modes at higher Tped is expected to be due to the current gradient

drive, which increases with βN due to the bootstrap current.  To verify this, we have provided

a small amount of negative edge-localised current drive (~7% of the plasma current); this

does indeed stabilise the intermediate n modes, allowing ~25% increase in βN before the n=6

mode is again destabilised. However, too much edge current drive is also bad; for example

doubling the negative edge current drive is again destabilising for intermediate n modes.

So far we have restricted consideration to an ideal MHD plasma model. However, we can

estimate the importance of diamagnetic effects [4,5] by comparing the MHD growth rate

with the ion diamagnetic frequency, ω*i. We find that ω*i is indeed in the range where

diamagnetic stabilisation of even the intermediate n modes

is possible, particularly for higher triangularity (where

MHD growth rates are smaller) and steeper pedestal

profiles. This suggests a scaling for reduced ELM

amplitudes due to diamagnetic stabilisation (ideal MHD

instabilities would then likely be replaced by weaker,

dissipative instabilities):
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where ρi is the ion larmor radius, Lp is the pressure length

scale and ωA is the Alfvén frequency.

In summary, we have shown that edge MHD instabilities

can limit Tped, and that the amplitude and radial extent of

ELMs (and hence their impact on confinement and exhaust) can be influenced by the

operating point in βN-Jedge space and diamagnetic effects. Indeed, negative current drive at

the plasma edge helps to stabilise the edge MHD and therefore may also be beneficial for

ELM control [6]; furthermore the effect of varying the pedestal width may also have an

influence, and this, together with diamagnetic effects, will be the subject of future work.
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Figure 5: Mode structure of
n=6 mode for Tped=1.5keV,
βN=2.5, δ=0.5.


