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Stellarators and Tokamaks Have Similar

Performance
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Stellarators Complement Tokamaks

* Both have poloidal + toroidal fields, but in stellarators
— confining poloidal field produced by external coils
— no/small plasma current avoids disruptions, VDEs
— good flux surfaces, even in vacuum
— globally reversed shear, NTMs stable

* 3-D nature allows changing magnetic configuration
properties over a wide range to illuminate toroidal
confinement physics

— aspect ratio, shape of last closed flux surface

— magnetic axis topology, qg(r) value and sign of the
shear

— degree and type of symmetry, flow damping



Stellarators Reduce Program Risk

Inherently steady-state (no disruptions, no current drive constraints)

— P =490 kW for > 54 minutes = 1.6 GJ in LHD so far

— near-term goal: P = 3 MW for 1 hour = 11 GJ

Densities (4.5 x 102° m=3) many (5—10) times Greenwald limit with
improved performance, lower impurity level, eases divertor constraints
— density “limit” (stored energy decreases with increasing density) set

by impurity radiation, not disruptions

Beta (4.5%) set by available power and equilibrium surfaces, not by
instabilities, even though ballooning modes were expected

— stong self-stabilization for interchange modes (magnetic well, axis
shift with beta)

— kink stability (low current, can avoid major resonances)

— second stability for ballooning modes (different character in
stellarators)

BUT so far have large plasma aspect ratio = large devices
— compact stellarators solve this problem



New Quasi-Symmetric Stellarators NCSX
and QPS Have Much Smaller Aspect Ratio

same size scale

colors indicate
IBl contours

* in R&D, prototype fabrication stage

- IBl geometry determines plasma flow magnitude and
direction and resulting transport and stability properties



Magnetic Field Symmetry and Plasma
Aspect Ratio Are Important

Quasi-symmetry

— small IBI variation in a
symmetry direction

— low flow damping in
symmetry direction allows
large flows (and shear) for
breakup of turbulent
eddies

Low effective field ripple
also reduces neoclassical
transport

Compactness means less
cost for a given plasma
performance and a more
competitive reactor
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An Improved Stellarator Reactor Vision

* Compact stellarators could combine the best features of
— tokamaks (good confinement, moderate aspect ratio) and

— stellarators (disruption immunity, very high densities, low/no
plasma current, steady-state operation, no feedback systems)

* ARIES group is studying ARIES-CS as a reactor

* Study shows that
stellarator reactors
can be comparable
to tokamaks in
compactness
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World Stellarators Vary Widely in Capability
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The Largest is LHD: Superconducting Coils, V,, =30 m3
Ra

s = 3.5-3.9m, a, ~0.5-0.6 m, B=3 T, Pypyng = 20-25 MW
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W 7-X is under Construction: Supercond. Coils, V,, = 30 m?
Rais =5.5m, a,=0.53 m, B=3T, P g,ing = 15-30 MW

Operation 2012+ due to coil quality problems
(defective HV insulation and interturn faults)

Speedup measures considered:
2nd coil test facility and 2nd assembly line



QPS Exploits Poloidal Symmetry

* Allows large poloidal flows
that most effectively break up
turbulent eddies that cause )
anomalous transport |
‘7

* Also reduces neoclassical -
transport to a very low level

* Coil sets allow varying key physics
features by factor 10-30; degree of

— quasi-poloidal symmetry, |
poloidal flow damping, ’ <R> 0.95m
neoclassical transport * (9=03-04m

- * (R){a)>2.3
stellarator/tokamak shear .« B=1T, 1.5-s pulse

— trapped particle fraction  P=35MW



NCSX and QPS Are Two Different
Types of Magnetic Configurations

* QPS broadens magnetic configuration ) & £/ ~ 0520 (108) 5 3 I3 BUREIEY A & D)
space explored by compact stellarators | !
to more than a single symmetry

— poloidal flows to suppress turbulence
and flow shearing to improve stability

— NCSX relies on toroidal flows

>

* Together they complete physics basis for
demonstrating attractiveness of compact
stellarators

— will generate the physics and design
basis and confidence to decide what
form a larger, follow-on experiment
would take

— give credibility to the stellarator
DEMO vision




NCSX Relies on Toroidal Flows and QPS on
Poloidal Flows to Improve Confinement

IB| contours flow lines flows on surface
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QPS & W 7-X Explore Different Approaches

* Different transport minimization Bl at r/a = 0.20 (blue: B < 1T, purple: B > 1T)
approaches to reduce B x VB drifts y= .|L‘er
— QPS reduces angle between B and ;_wﬂ%‘LLFLTiB_;f LL
VB -- possible at low R/a g o=~ A
S I NB_L =i
il r 1

— W 7-X reduces VB in a surface -- NS i NS i

. . 2NN |
possible at high R/a ' ij il
. AV i =) i e
* Low bootstrap current and quasi- N Hm ll.ﬂlk+
0 2 4 6

poloidal symmetry in QPS at very low ¢
aSpeCt ratio IB| at r/a = 0.50 (blue: B < 1T, purple: B > 1T)
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* The complementarity and synergism of : \;';,{,i‘ M ‘n
the two experiments is needed for d ot : |
concept improvement similar to that for |/
tokamaks and spherical tori. ouleee

* W 7-X currentless at four times QPS's
aspect ratio. s




QPS Has Large, Sheared Poloidal
Flows Compared to W 7-X
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QPS Has Largest Poloidal Flows

- Important for breakup of turbulent eddies

<u-ee>
(m/sec)

4 10*

3 10*

2 10*

ECH parameters

QPS

LHD

L W7 X

! \NCSX e ——

03 04

05 06 07 08 09

(e/p_. )

edge

-1000

-2000

-3000

-4000

-5000

ICH parameters

0.2

04 05 06 0.7 08

(e/p_. )

edge




Flow Variation within Flux Surfaces Impacts
MHD Ballooning/Interchange Thresholds

1 \ \ \ I

- Maximum parallel flow B ECH QPS
shearing ratesinQPS 2 o1 ' l
are ~0.5 of Alfvén i
time : 001

+ Could influence MHD ~ 2 0001 |
stability thresholds E
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tearing, etc.) 10° \ \ | |
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QPS Has Highest Velocity Shearing Rates,
Comparable to ITG Growth Rates

le— D 1II-D 9.6 MW NBI
| QPS DTEM-ITG growth
%ate (G. Rewoldt et al.)
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SUMMARY

Stellarators complement tokamaks and reduce
programmatic risk

World stellarators vary in capabilities (power, size) and
magnetic configuration properties

Newer concepts (NCSX, QPS) feature compactness and
guasi-symmetry to further improve performance

IBl geometry determines plasma flow direction, magnitude
and shearing rate, hence resulting transport and stability
properties

QPS has the largest poloidal flow and flow shearing for
suppression of instabilities

ARIES-CS study shows stellarators can be comparable to
tokamaks in compactness



