

Report on the Levitated Dipole eXperiment (LDX): An Uplifting Fusion Adventure

Columbia University

Darren Garnier For the LDX Team

Fusion Power Associates Annual Meeting Washington, DC December 3, 2009

Introduction to Magnetic Dipoles

Why would you build LDX?

Levitated Dipole Confinement Concept: Combining the Physics of Space & Laboratory

- Akira Hasegawa, 1987
- Two interesting properties of active magnetospheres:
 - High beta, with ~ 200% in the magnetospheres of giant planets
 - Pressure and density profiles are strongly peaked
 - "Invariant profiles" turbulent activity increases peakedness

J. Spencer

What are Invariant Profiles?

Solenoid, theta-pinch, large aspect ratio torus, ...

- Invariant to adiabatic interchange of flux tubes
- Flux tube volume:
 - $\delta V = \oint \frac{d\ell}{B} = \text{constant}$
- Invariant profiles:
 - $\bullet n \ \delta V = \text{constant}$
 - $p \ \delta V^{\gamma} = \text{constant}$
 - Density and pressure profiles are flat

What are Invariant Profiles?

 $P_{core}/P_{edge} \approx 680$

 $T_{core}/T_{edge} \approx 14$

Kesner, et al. Nucl. Fus. 2002

30 m

400-600 MW D-T Fusion

60 m

500 MW D-D(He³) Fusion

Testing a Hete Apple Consider Consider and Laboratory Plasma Confinement Internal ring

Kesner, et al. Nucl. Fus. 2002

- Steady state
- Non-interlocking coils
- Good field utilization
- Possibility for $\tau_E > \tau_p$
- Advanced fuel cycle

60 m

500 MW D-D(He³) Fusion

Design and Construction of LDX

Seemed simple enough at the time...

Lifting, Launching, Levitation, Experiments, Catching

Floating Dipole Conceptual Design

- 1. Magnet Winding Pack
- 2. Heat Exchanger tubing
- 3. Winding pack centering clamp
- 4. He Pressure Vessel (Inconel 625)
- 5. Thermal Shield (Lead/glass composite)
- 6. Shield supports (Pyrex)
- 7. He Vessel Vertical Supports/ Bumpers
- 8. He Vessel Horizontal Bumpers
- 9. Vacuum Vessel (SST)
- 10. Multi-Layer Insulation
- 12. Laser measurement surfaces

Winding Pack and He Pressure Vessel

Advanced ITER Nb₃Sn conductor

8 mm

... wound very carefully...

Lead Radiation Shields and Multi-Layer Insulation

Support Washer Stacks

- Specification
 - Hold heat leak to 5 K < 10 mW</p>
 - Withstand 10g crash (5 Tons!)
- Solution
 - Stack of 400 4mil thick washers
- 24 Stacks (~7000 coins) Assembled, Sized and Installed

LDX Airbag Emergency Catcher

W.R. Carey et al, *Society of Automotive Engineers*, 2nd International Conference on Passive Restraints, Detroit, MI, 1972

• NASA Pathfinder application research

NASA airbag research budget ~ 3 X total LDX budget!

Launcher / Catcher

Tested to limit all accelerations to less than 5 g

Dilbert Levitation System

© Scott Adams, Inc./Dist. by UFS, Inc.

Greatly simplified

Easily manufactured at low cost (even for Starbucks)

• Not reliable.

Levitation Control System Schematic

Digitally Controlled Levitation

- Levitated Cheerio Experiment II
- Uses LDX digital control system
- Modified PID feedback system
- Real-time graph shows position and control voltage

Levitation Control System

- Final LDX levitation control system contains added complexity
 - Reliable levitation with over 80 hours of flight time

The Levitated Dipole Experiment (LDX)

LDX Operations and Results

Wow... it really works!

Levitated Dipole Plasma Experiments

Floating (Up to 3 Hours)

Plasma Confined by a Supported Dipole

- 5 kW ECRH power
- Ip ~ 1.3 kA or 150 J
- Cyclotron emission (Vband) shows fastelectrons
- Long, low-density "afterglow" with fast electrons

Fast Electrons: Anisotropic at ECRH Resonance

Fast Electrons: Anisotropic at ECRH Resonance

Plasma Confined by a Levitated Dipole

Supported plasmas have flat density profiles

Levitated plasmas show invariant profiles

Edge probe array measures low frequency turbulence

Low frequency fluctuations consistent with Turbulent Pinch

$$\frac{\partial N}{\partial t} = \langle S \rangle + \frac{\partial}{\partial \psi} D \frac{\partial N}{\partial \psi} \,, \tag{1}$$

where $\langle S \rangle$ is the net particle source within the flux-tube, and the diffusion coefficient is $D = R^2 \langle E_{\varphi}^2 \rangle \tau_{cor}$ in units of $(V \cdot \sec)^2 / \sec$.

- The dipole concept offers a unique avenue to study magnetic confinement bridging space and the laboratory
- The LDX device is highly innovative, superconducting magnetic confinement device with reliable operation
- LDX is fulfilling its physics mission:
 - Demonstration of stable high beta plasmas
 - Significant plasma stored energy in the bulk plasma has been observed
 - Demonstrated the formation of invariant "natural" density profiles in a laboratory dipole plasma.
 - Peaked profile formation likely the result of low frequency turbulent pinch

Next Steps

Levitation System upgrades

- Incorporate magnetic signals
 - remove influence of plasma diamagnetic current on levitation

Diagnostic upgrades

- Improved fluctuation diagnostics to study turbulent transport
- Core temperature diagnostics to test effective adiabatic constant
 - Including Thompson scattering system

"Scotty, we need more power!"

- Higher power for higher density and temperatures
- 10 kW, 28 GHz gyrotron (with U Maryland collaboration)
- 200 kW ion heating (slow wave ICRH)
 - 1 MW, 3-28 MHz Transmitter donated by GA to be installed with ARRA funding