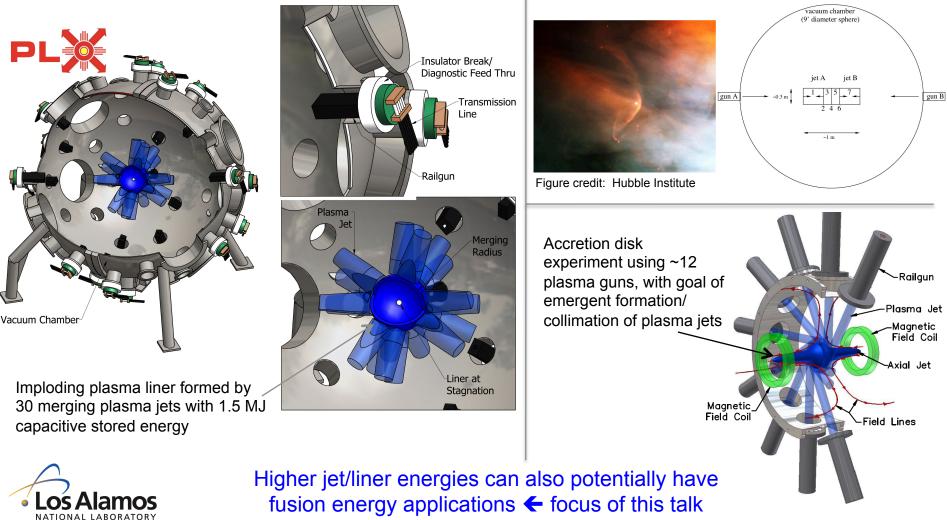
LA-UR-11-07030

Plasma Jet Driven Magneto-Inertial Fusion (PJMIF)

Scott Hsu

Physics Division, LANL

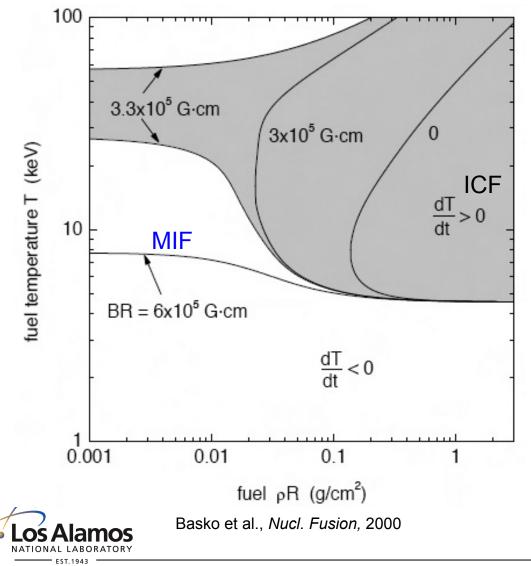
Fusion Power Associates 32nd Annual Meeting and Symposium


December 14-15, 2011

Washington, D.C.

Plasma jet experiments can provide cm/µs/Mbar-scale plasmas for discovery HEDLP science and a platform for laboratory astrophysics

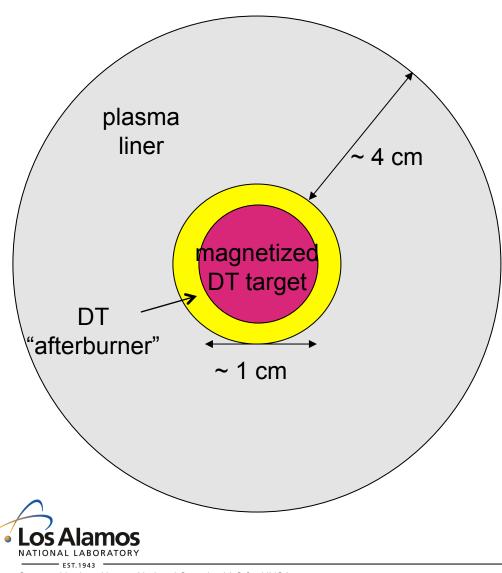
Plasma jets forming imploding plasma liners on the Plasma Liner Experiment (PLX), funded by DOE-FES:


Operated by Los Alamos National Security, LLC for NNSA

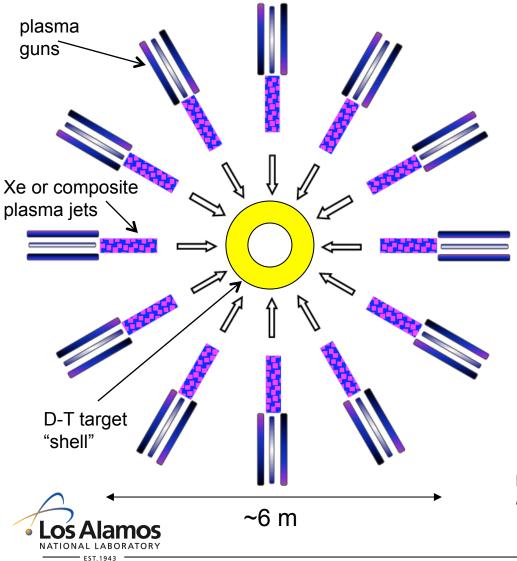
EST 1943

Head-on collision of plasma jets for collisionless

shock experiments, funded by LANL-LDRD:


MIF uses a magnetic field in inertially confined fuel to potentially allow fusion burn at modest implosion velocity (<100 km/s) using efficient (η ~0.3–0.7) pulsed power drivers

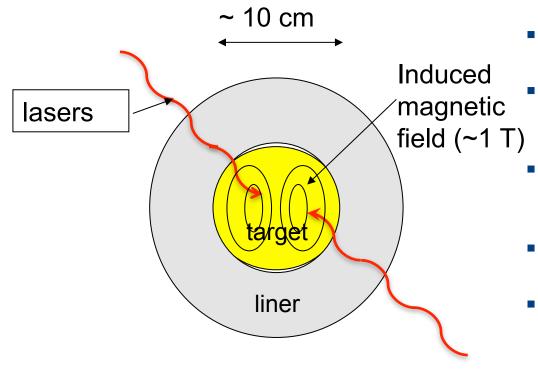
- Magnetic field reduces thermal transport and enhances α-particle energy deposition
 - Br instead of pr becomes fusion figure-of-merit
 - "Ignition" possible at pr~0.01
 g/cm²
- Confinement time determined by heavy inflowing liner, not inertia of burning fuel
- High driver efficiency (0.3–0.7) means modest gains ~10–30 are relevant for fusion energy


Operated by Los Alamos National Security, LLC for NNSA

PJMIF burn configuration at peak target compression with energy gain > 10

- Target at peak compression
 - $n_{DT} \sim 5 \times 21 \text{ cm}^{-3}$
 - 。 *T* ≈ 10 keV
 - 。 *B* ~ 100 T
 - *M* ~ 10 mg
 - o dwell time $\tau \sim 1 \ \mu s$
- These conditions would give (not including afterburner)
 - ~10% fuel burn-up
 - ~1.3×10²⁰ DT reactions
 - $_{\circ}$ ~ 350 MJ fusion yield
- Target compressed by much heavier (Xe) plasma liner
 - ~30–50 MJ initial kinetic energy
 - ∘ 10–30 g @ ~50 km/s

Converging plasma jets may be used to assemble both the target and plasma liner in a standoff manner


Operated by Los Alamos National Security, LLC for NNSA

- Option (1): subset of guns fire DT jets forming target shell immediately followed by remainder of guns firing DT/Xe composite jets forming afterburner and heavy liner to compress DT target
- Option (2): all guns fire simultaneously launching composite jets with DT target and afterburner layers in front and Xe layer in rear
- Fuel magnetization discussed on next slide
- Fully standoff fuel assembly and implosion/compression

For more details, please see T. J. Awe et al., *Phys. Plasmas* **18**, 072705 (2011) and S. C. Hsu et al., *IEEE Trans. Plasma Sci.*, to be published (2012).

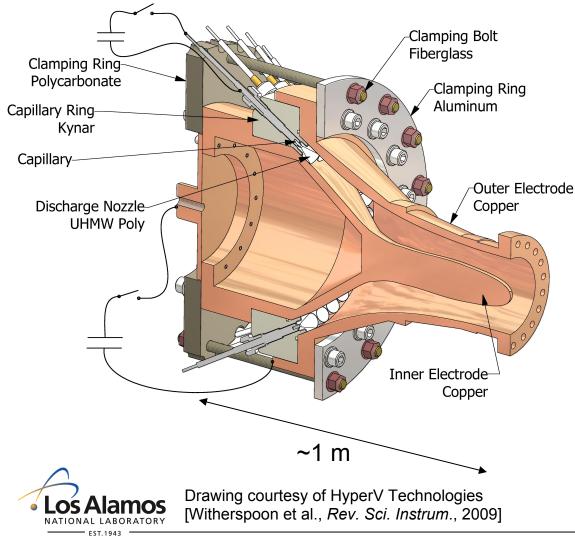
Method for standoff magnetization of DT fuel is needed: laser beat wave current drive is an attractive option

Lasers fired ~1 µs prior to peak compression:

- Slightly frequency-offset laser beams generate beat wave at ~ω_{pe} to resonantly accelerate electrons, which drives current
- Parent frequencies well above cutoff so no accessibility issue
- Has been demonstrated at low density in a tokamak [Rogers & Hwang, *Phys. Rev. Lett.*, 1992]
- ~1 T seed field needed with late stage compression amplifying field to ~ 100 T
- Probable lasers needed: ~1 µm, ~1 kJ, ~1 ns
- Exploratory experiments using refurbished 50 J CO₂ lasers and PIC modeling are ongoing (UC, Davis and LANL/Voss Scientific, respectively)

Use of electron beams and fundamentally different methods also need to be evaluated

Preliminary and highly idealized 1D hydrodynamic simulations* are exploring/identifying G>5 possibilities


Implosion energy, total yield, target- only yield (MJ)	Ave. initial target (DT) parameters (R-cm, n-cm ⁻³ , T-eV, v-km/s)	Ave. initial afterburner (DT) parameters (ΔR-cm, n-cm ⁻³ , T-eV, v-km/s)	Ave. initial liner (Xe) parameters (ΔR-cm, n- cm ⁻³ , T-eV, v-km/s)	Total gain, target- only gain
20, 416,189	4.1, 3.4e18, 80, 4.0	0.14, 1.2e20, 0.5, 39.2	3.5, 7.3e19, 1.4, 40 (stepped profile)	21, 9
30, 660, 231	4.1, 4.3e18, 80, 6.0	0.14, 1.9e20, 0.4, 58.8	3.5, 5.0e19, 1.4, 60 (stepped profile)	22, 8
50, 1000, 292	4.1, 4.3e18, 80, 8.7	0.14, 1.7e20, 0.2, 59.6	3.5, 8.2e19, 1.4, 60 (steady-state profile)	20, 6
50, 2000, 481	4.0, 4.3e18, 80, 6.0	0.14, 1.9e20, 0.5, 58.8	3.5, 7.9e19, 1.4, 60 (stepped profile)	40, 10
77, 4300, 687	4.0, 4.3e18, 80, 8.6	0.14, 4.3e20, 0.5, 59.1	3.5, 1.3e20, 1.4, 60 (steady-state profile)	56, 9

*Idealized Lagrangian 1D simulations: no thermal conduction, alpha-deposition is adjustable parameter (0.2–0.3 in target; 0.5–1.0 in afterburner), ideal gas EOS; runs are initiated just as liner/ afterburner engage the target prior to compression.

Results courtesy of Y. C. F. Thio using the LF1D code

Innovative shaped coaxial guns capable of launching plasma jets of required parameters are key for PJMIF

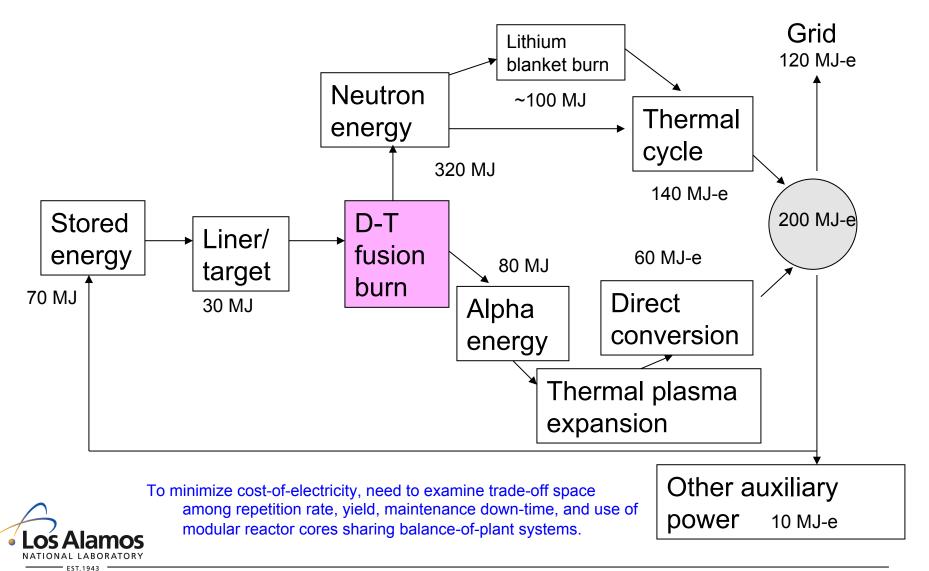
- Required parameters
 - L ~ 5 cm
 - n ~ 10¹⁷ cm⁻³
 - V ~ 40–80 km/s
 - M ~ 10–60 mg
 - T ~ few eV
- Pre-ionized injection to overcome critical ionization velocity limit and "leaky" snow plow acceleration
- Shaped inner electrode to prevent blow-by of most of the plasma mass
- PJMIF will require such guns operating at few MA, and injection of multiple layers with different species

Main physics challenges for single-shot PJMIF proof-ofprinciple demonstration

• Forming/launching jets with required parameters/characteristics

- Density, velocity, mass, Mach number
- Geometry/profile
- Impurity level

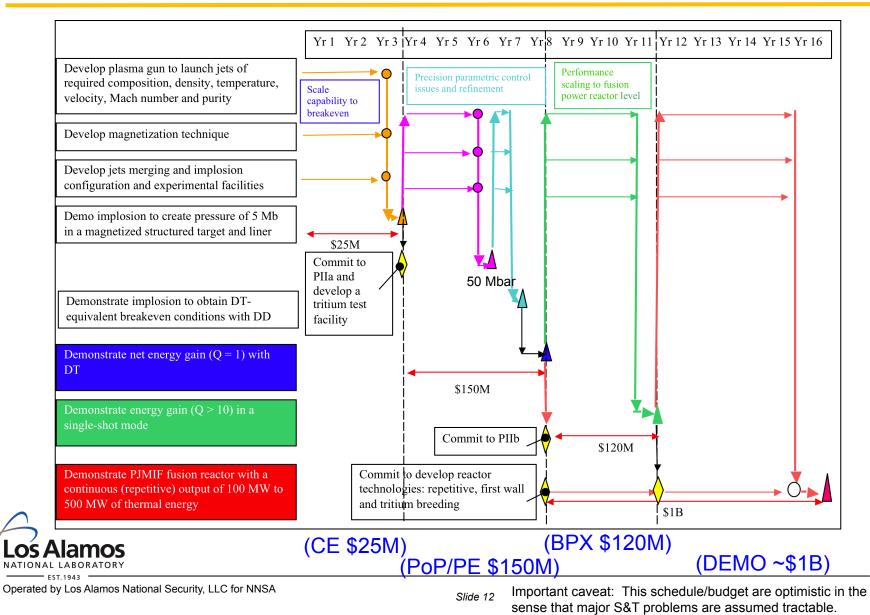
Target and liner formation/implosion


- Requisite uniformity
- Acceptable levels of convergent instabilities and liner/fuel mix
- Reaching sufficient peak pressures, densities, temperature, dwell time

Standoff magnetization

- Demonstrate physics of beat wave current drive at MIF-relevant density
- Evaluate current drive efficiency
- How to obtain desired field strengths and topologies at peak compression

Gains as low as ~10 may generate net electricity due to efficiencies of PJMIF


Reactor and technology issues/challenges

- Repetitive pulsed power (3.15×10⁷ shots per year at 1 Hz operation)
 - Promising advances by KrF IFE program in repetitive solid-state switching technology (10 million-shot runs have been achieved at 5 Hz operation) [Weidenheimer, *Power Modulator Symposium*, 2006]
- PJMIF possibly compatible with liquid first wall to avoid costly solid materials development program
 - Surface vortex liquid flows envisioned for heavy ion beam fusion [Bardet, Fus. Sci. Tech., 1995] potentially well-suited for PJMIF
 - However, solid and wetted wall concepts still viable especially due to relatively low heat loading (~1 MW/m² for 100 MW modular fusion core with 6 m diameter chamber)
 - Chamber clearing does not appear to be an issue
- Gun erosion and surviving fusion blast
 - Guns will be sacrificial needing periodic replacement
 - Much R&D needed to determine material requirements (*e.g.*, tungsten alloys)

Ron Miller is acknowledged for his inputs on this slide

PJMIF presents a potential low-cost (~\$300M) R&D path to demonstrating single-shot engineering breakeven in ~decade

