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FIRE Physics Workshop 2000

•  Welcome to the Workshop, we will be experimenting with some new methods
of remote participation to improve future workshops.  Remote particpants,
please send email to fire@pppl.gov  for access code.

•  The goal of the workshop is:

to understand, assess and develop a plan
to address physics issues driving the FIRE design.

•   Please fill out chits and submit them to discussion leader or me.  We will use
these to help develop a Physics R&D Plan for FIRE.  We will post and respond
to all chits.

•   Focus on identifying high-leverage items for the “Discussion of Critical Issues,
Opportunities and Needed Actions” on Wednesday.



Burning Plasma Physics is Widely Accepted as the
Primary Objective for a Next Step in Fusion Research

•   Grunder Panel and Madison Forum endorsed Burning Plasmas as next step.

•   NRC Interim Report identified “integrated physics of a self-heated plasma” as
one of the critical unresolved fusion science issues.

•   The Snowmass Fusion Summer Study endorsed the burning plasma physics
objective, and that the tokamak was technically ready for high-gain experiment.

•   R. Pellat, Chair of the CCE-FU has stated that “the demonstration of a
sustained burning plasma is the next goal” for the European Fusion Program.

•   SEAB noted that “There is general agreement that the next large machine
should, at least, be one that allows the scientific exploration of burning
plasmas” and if Japan and Europe do not proceed with ITER “the U. S. should
pursue a less ambitious machine that will allow the exploration of the relevant
science at lower cost.”  “In any event the preliminary planning for such a
machine should proceed now so as to allow the prompt pursuit of this option.”



The Rosetta Stone for Fusion

 Fusion Energy Fusion Science

plasma physics nτET ρ*, ν*, β  (BR5/4)

burning physics Q = Pfus/Paux-heat  fα = Pα/(Paux-heat + Pα)

time s, min, hr τE, τskin, etc

flexibility low high

availability high low

technology nuclear enabling  

Fusion Science and Fusion Energy

have different languages, metrics, and missions.



Attractive MFE 
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(e.g. ARIES Vision)
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Data Base
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Alpha Dominated

fα = Pα /(Pα + Pext) > 0.5,  
τBurn > 15  τE,  2 - 3  τHe 

Burning Plasma Physics 
and

 Advanced Toroidal Physics
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Stepping Stones for Resolving the Critical Fusion
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What is the optimal position for the Stepping Stones to obtain the required information while minimizing cost and time?
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Burning Plasma Physics Objectives for a
Fusion Ignition Research Experiment (FIRE)

•  Explore and understand the physics of alpha-dominated fusion plasmas:

•  Energy confinement physics with alpha-dominated heating

•  β-limit physics with alpha- dominated heating

•  Density limit physics with alpha- dominated heating

•  Control alpha- dominated plasmas (e.g., modification of plasma profiles)

•  Sustain alpha- dominated plasmas - high-power-density exhaust of
plasma particles and energy, alpha ash exhaust, study effect of alpha-
heating on the evolution of bootstrap current profile.

•  Exploration of alpha- dominated burning plasma physics in some advanced
operating modes and configurations that have the potential to lead to
attractive fusion applications.

•  Understand the effects of fast alpha particles on plasma stability.

Attain, explore, understand and optimize dominantly self-organized plasmas

DMeade
to provide knowledge for the design of attractive Magnetic Fusion systems.
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Fusion Ignition Research Experiment
(FIRE)

Design Goals
• R =   2.0 m,   a = 0.525 m
• B =     10 T,    (12T)*
• Wmag= 3.8 GJ,          (5.5 GJ)*
• Ip =      6.5 MA,    (7.7 MA)*
• P     > P     , Pfusion ~ 220 MW
• Q ~ 10,    τE ~ 0.55s
• Burn Time  ∼ 20s    (12s)*
• Tokamak Cost ≤ $0.3B
• Base Project Cost ≤ $1B

DMeade
* Higher Field Upgrade
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LN BeCu ("HTS")
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Attain, explore, understand and optimize dominantly self-organized
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 plasmas to provide knowledge for the design of attractive MFE systems.



Basic Parameters and Features of FIRE Reference Baseline
R, major radius 2.0 m
a, minor radius 0.525 m
κ95, elongation at 95% flux surface ~1.8
δ95, triangularity at 95% flux surface ~0.4
q95, safety factor at 95% flux surface >3
Bt, toroidal magnetic field 10 T with 16 coils, < 0.5% ripple @ Outer MP
Toroidal magnet energy 3.7 GJ
Ip, plasma current ~6.5 MA (7.7 MA at 12 T)
Magnetic field flat top, burn time  21 s at 10 T, Pfusion ~ 200 MW)
Pulse repetition time 2 hr @ full field
ICRF heating power, maximum 30 MW, 100MHz for 2ΩT, 4 mid-plane ports
Neutral beam heating None, may have diagnostic neutral beam
Lower Hybrid Current Drive None in baseline, upgrade for AT phase
Plasma fueling Pellet injection (≥2.5km/s vertical launch inside

mag axis, possible guided slower speed pellets)
First wall materials Be tiles, no carbon
First wall cooling Inertial between pulses
Divertor configuration Double null, fixed X point, detached mode
Divertor plate W rods on Cu backing plate (ITER R&D)
Divertor plate cooling Inner plate-inertial, outer plate active - water
Fusion Power/ Fusion Power Density ~200 MW, ~10 MW m-3 in plasma
Neutron wall loading ~ 3 MW m-2
Lifetime Fusion Production 5 TJ (BPX had 6.5 TJ)
Total pulses at full field/power 3,000 (same as BPX), 30,000 at 2/3 Bt and Ip
Tritium site inventory Goal < 30 g, Category 3, Low Hazard Nuclear Facility

DMeade
Design Upgrade at B = 12T and Ip = 7.7MA with a 12 second flat top has been identified.
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FIRE Incorporates Advanced Tokamak Innovations

FIRE Cross/Persp- 5/25/99-8/DOE

Compression Ring

Wedged TF Coils (16), 15 plates/coil*

Double Wall Vacuum
 Vessel   (316 S/S)

All PF and CS Coils*
OFHC C10200

Inner Leg BeCu C17510, 
 remainder OFHC C10200

Internal Shielding
( 60% steel & 40%water)

Vertical Feedback Coil

W-pin Outer Divertor Plate
Cu backing plate, actively cooled

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

Passive Stabilizer Plates
space for wall mode stabilizers

Direct and Guided Inside Pellet Injection

AT Features

• DN divertor

• strong shaping

• very low ripple

• internal coils

• space for wall
   stabilizers

• inside pellet
  injection

• large access ports

2m



     FIRE would have Access for Diagnostics and Heating

C3PO

16 mid-plane ports  1.3m x 0.65m
32 divertor ports  0.5m x 0.2m (16 for cryopumps/cooling water
24 vertical ports  0.13m diam



Guidelines for Estimating Plasma Performance

Confinement (Elmy H-mode) - Based on today's tokamak data base

τE = 0.094 I0.97 R1.7 a0.23 n20
0.41 B0.08Ai

0.2  κ0.67 Pheat
-0.63

Density Limit -  Base on today's tokamak data base

n20 ≤ 0.75 nGW  =  0.75 Ip/πa2,  H98 ≈ 1 up to 0.75 nGW (JET, 1998)

Beta Limit - theory and tokamak data base

β ≤ βN(Ip/aB),     βN ~2.5 conventional, βN ~ 4 advanced

H-Mode Power Threshold - Based on today's tokamak data base

Pth  ≥  (0.9/Ai) n0.75 B R2,   nominal L to H, with H to L being ~ half
when well below the density limit.

Helium Ash Confinement τHe = 5 τE,       impurities = 3% Be

DMeade
Workshop Action Item: What changes should be made to these guidelines?



Nominal FIRE Plasma Parameters from 0-D Simulations
R, plasma major radius, m 2.0
A, plasma minor radius, m 0.525
R/a , aspect ratio 3.8
κ_95, plasma elongation at 95% flux 1.77
δ_95, plasma triangularity at 95% flux 0.4
q_95 3.02
B_t, toroidal magnetic field, T 10
I_p, plasma current, MA 6.44
l_i(3), internal plasma inductance 0.8
Fraction of bootstrap current 0.25
Ion Mass, 50/50 D/T 2.5
<ne>, 10^20 /m^3, volume average 4.5
α_n,   density profile peaking = 1 + α_n 0.5
<n>l/Greenwald Density Limit, ≤ 0.75 0.70
<T>n, density averaged temperature, keV 8.2
T(0), central temperature, keV 13.1
α_T, temperature profile peaking = 1 + α_T 1
Impurities,  Be:high Z, % 3 : 0
Alpha ash accumulation, n_α/n_e,  % 2.6
Zeff 1.41
ν*, collisionality at q = 1.5 0.043
P_ext , MW 22
P_fusion, MW 223
P_heat , MW 56.5
tau_p*(He)/tau_E 5.00
tau_E, energy confinement time  s 0.57
ITER98H-multiplier,  ≤1 1.04
ITER89P - Multiplier 2.41
nd(0)T(0)τΕ , 10^20 m^-3keVs 41.69
Q_DT 10.16
IA, MA 24.5
Plasma current redistribution time,    s 13.9
Pheat/P(L->H),  ≥ 1 1.149
W_p, plasma thermal energy, MJ 32.18
β_total,  thermal plasma + alphas,     % 3.11
β_N,   ≤ 2.5 2.54
Core Plasma Pressure, atmospheres ~ 20



FIRE can Access High Gain in Elmy H-Mode 
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13.3 MA

α -n = 0.5

α -n = 0.1

6 MA, 4T

n ≤ 0.75nGW  ,  PHeat≥ PLH

3% Be,  = 5τHe τE
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 7.7 MA

Q

The baseline FIRE (6.44 MA) can access the alpha-dominated regime (Q > 5) for HH = 1.
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* ARIES-AT, Q = 45 at HH = 1.3
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The Energy Mission is vulnerable to uncertainties in confinement.



FIRE can Access Alpha-Dominated Plasmas in H-Mode
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The Science Mission is robust to uncertainties in confinement.



Baseline Operating Point can Access Q ~ 10 
with Significant Operating Space for Q > 5

12 T Upgrade can Access Q > 25 
with Significant Operating Space for Q > 10

John Mandrekas



1 1/2 -D Simulation* of Burn Control in FIRE
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Current Redistribution
Time
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* The Tokamak Simulation Code (TSC) is one of several plasma simulation codes. 
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Click here  http://w3.pppl.gov/topdac/
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http://w3.pppl.gov/topdac/
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30 tau_E
 6  tau_He
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8T, 45 s

4T, 220s
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Pulse Duration
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1.5 tau_skin



Alpha Power

τp* = 5 τE

τp* = 10 τE

τp* = 1000τE
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Helium Ash Accumulation can be Explored on FIRE

TSC/Kessel/21-q.ps

Alpha Power

Auxiliary Power
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Adjust divertor pumping to control helium ash
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FIRE could Access High-Gain Advanced Tokamak
Regimes for Long Durations

•  The coupling of advanced tokamak modes with strongly burning plasmas is a
generic issue for all advanced “toroidal” systems.  The VLT PAC, Snowmass
Burning Plasma and Energy Subgroup B recommended that a burning plasma
experiment should have AT capability.

•  FIRE, with strong plasma shaping, flexible double null poloidal divertor, low TF
ripple, dual inside launch pellet injectors, and space reserved for the addition of
current drive (LHCD) and/or a smart conducting wall, has the capabilities needed
to investigate advanced tokamak regimes in a high gain burning plasma.

•  The LN inertially cooled TF coil has a pulse length capability ~250 s at 4T for DD
plasmas.  This long pulse - AT capability rivals that of any existing divertor
tokamak or any under construction.  The coils are not the limit.

•   Recent AT regimes on DIII-D (Shot 98977) sustained for ~ 16 τE serve as
demonstration discharges for initial AT experiments on FIRE.  Need to develop
self-consistent scenarios with profile control on FIRE with durations ~ 3 τskin .
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FIRE can Access “Long  Pulse” Advanced 
Tokamak Modes at Reduced Toroidal Field.

JET, JT-60U

KSTAR

TPX

Note: FIRE is ≈ the same size as TPX and KSTAR. 
At Q = 10 parameters, typical skin time in FIRE is 13 s and  is 200 s in ITER-RC .
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The combination of  KSTAR and FIRE could cover the range from
 steady-state non-burning advanced-tokamak modes to 
“quasi-equilibrium”  burning plasmas in advanced tokamak modes.



MHD operating space for Tokamaks

εβP
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FIRE can Access MHD Regimes of Interest from 
Today's Data Base to those Envisioned for ARIES-RS

q* = 3

n>1 RWM

q* = 4
βN = 5

220 MW

q* = 2

4.5MA, 82% Ibs
6.75T, 60s, 150 MW

4.82MA, 70% Ibs
7.5T, ~37s, 150 MW

5.2MA, 60% Ibs
8.25T, 30s, 150 MW

 5.65MA, 60% Ibs
 9T, 25s, 150 MW

FIRE-RS
q(0)   = 2.9,
qmin = 2.6,
q95    = 4.6 



FIRE can Test Advanced Regimes of Relevance to ARIES-AT
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5.65      Ip(MA)      4.50

9.00      BT(T)        6.75

2.90      qo             2.90

2.60      qmin          2.60

1.31      βp            2.11

2.60      βN            4.50

3.10      β(%)        5.70

0.42      li              0.39

0.50      fbs            0.82

165       Pfus(MW) 170

29.4      Wth(MJ)    30.1

0.65      ne/nGr       0.81

2.40      α-loss(%) 9.40
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Q = 10, 
HH = 1.56
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Q = 5,
HH = 1.36
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Q = 10,
HH = 1.2
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The transport calculations assumed 150 MW of fusion power and n(0)/<n> = 1.5.
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this regime
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this regime
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Duration

~ 4 tau_skin
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Duration

~2 tau_skin
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Needs self-
consistent current drive power
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Q = 10
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q95 ~ 5.4, n/ngw ~ 0.6

DMeade


DMeade
FIRE-AT 4
    Q = 5
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FIRE-Elmy is  conventional Elmy H-Mode
FIRE-AT 1 is modest AT with 50% fbs and        = 2.6    
FIRE-AT 4 is  strong AT with 82% fbs and      = 4.5
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DIII-D shot 98977 is close to a Demonstration Discharge for FIRE-AT 1
FIRE-AT 1 requires q95 = 4.5, n/ngw = 0.65,      H89 = 7.1, and 
produces fbs = 50% and Q = 10 (Pfusion =150 MW, Pin = 15 MW).  This mode would be useful for quasi-steady experiments ~ 2 skin times.
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Potential Next Step Burning Plasma Experiments and Demonstrations in MFE

FIRE

R = 2 m
B = 10 T

IGNITOR

R = 1.3 m
B = 13 T

JET

R = 2.9 m
B = 3.8 T

ITER-FEAT
Outline Design

R = 6.2 m
B = 5.3 T

ARIES-RS (1 GWe)

B = 8 T

R = 5.5 m

Cost Drivers ARIES-ST ITER-FEAT        ARIES-RS JET FIRE IGNITOR

Plasma Volume (m3)  810 837 350 95 18 11

Plasma Surface (m2) 580 678 440 150 60 36

Plasma Current (MA) 28 15 11 4 6.5 12

Magnet Energy (GJ)  29 50 85 2 5 5

Fusion Power (MW) 3000 500 2200 16 200 100

Burn Time (s), inductive    steady                300 steady* 1 20 5

ARIES-ST (1 GWe)

Bto = 2.1 T

R = 3.2 m

DMeade
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* assumes non-inductive current drive
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Status of FIRE Cost ing Activity (12/12/99)

Tokamak $284,500

Ancillary $157,039

Power $235,000

Facility $206,035

Project Support $180,412

Tota l $1,063,006* (k$)

*FY2000$ without contingency

DMeade
• Preliminary input from subsystem engineers ( k$)

DMeade
•  The initial estimates are being reviewed to eliminate double counting and 
    include missing cost elements.
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•  The cost estimate will be available for external review by mid-July.



Timetable for Burning Plasma Experiments

Year
1990 20001995 2005
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0
2010 2015

TFTR
JET

ITER

?

Fusion
Gain

National Ignition Facility (NIF)
Laser Megajoule (LMJ)

Compact Tokamak
Next Step Option (?)

•  Even with ITER, the MFE program would be unable to address the burning plasma 
issues in alpha-dominated (Q > 5) plasmas for ≥ 15 years.

•  Compact High-Field Tokamak Burning Plasma Experiment(s) would be a natural 
extension of the ongoing “advanced” tokamak program and could begin  alpha-
dominated experiments by ~ 2010.

•  The information “exists now” to make a quantitative technical assessment, and 
decision on MFE burning plasma experiments for the next decade.  

DMeade
First Version January 1998



Critical Issues for FIRE and Magnetic Fusion

The critical physics and engineering issues for FIRE are the same as those for
fusion, the goal of FIRE is to help resolve these issues for magnetic fusion.  The
issues and questions listed below need to be addressed in the near future.

•  Physics
- confinement - H-mode power threshold, edge pedestal, AT modes,
- stability - NTMs, RWM, disruptions: conducting wall? feedback coils? VDE?
- heating and current drive - ICRF is baseline: NBI & LHCD as upgrades?
- boundary - detached divertor operation, impurity levels, confinement
- self-heating - fast alpha physics and profile effects of alpha heating
Development of self-consistent self-heated AT modes with external controls

•  Engineering
- divertor and first wall power handling (normal operation and disruptions)
- divertor, first wall and vacuum vessel for long pulse AT modes
- evaluate low inventory tritium handling possibilities
- complete many engineering details identified in FIRE Engineering Report
- evaluate potential sites for Next Step MFE experiment
- complete cost estimate for baseline, identify areas for cost reduction



Major Conclusions of the FIRE Design Study

• Exploration, understanding and optimization of alpha-dominated (high-gain)
burning plasmas are critical issues for all approaches to fusion.

• The tokamak is a cost-effective vehicle to investigate alpha-dominated fusion
plasma physics and its coupling to advanced toroidal physics for MFE. The
tokamak is technically ready for a next step to explore fusion plasma physics.

• The FIRE compact high field tokamak can address the important alpha-
dominated plasma issues, many of the long pulse advanced tokamak issues
and begin the integration of alpha-dominated plasmas with advanced toroidal
physics in a $1B class facility.

• The FIRE design point has been chosen to be a “stepping stone” between the
physics accessible with present experiments and the physics required for the
ARIES vision of magnetic fusion energy.

• A plan is being developed for an Advanced Tokamak Next Step that 
will address physics, engineering and cost issues in FY 2000-1 with the
goal of being ready to begin a Conceptual Design in 2002.




