High Field Tokamaks for Burning Plasma Experiments

E. Mazzucato Princeton Plasma Physics Laboratory

presented at the Workshop on Physics Issues for FIRE

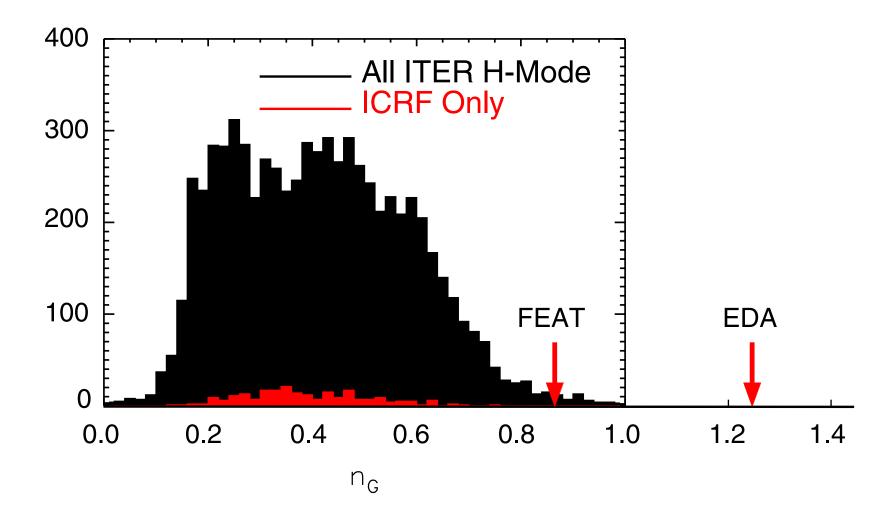
> May 1-3, 2000 Princeton, NJ

Burning Plasma Experiments

- The next step in the demonstration of the scientific feasibility of a tokamak fusion reactor is a DT burning plasma experiment for the study and control of self-heated plasmas.
- Several burning plasma experiments have been proposed over the years:

IGNITOR, CIT, ITER, FIRE

• The operational regime foreseen for ITER is the ELMy H-mode, for which a number of scaling laws has been derived from a vast database. One of the latest (IPB98(y,2) used for ITER-FEAT) is


$$\tau_E \omega_c \propto \rho^{*-2.70} \beta^{-0.90} v^{*-0.01} M^{0.96} q_{95}^{-3.0} A^{-0.73} k^{2.3}$$

with the L-H transition power $P_{LH} = 3.24 M^{-1} B^{0.75} \overline{n}_{20}^{0.60} R^{0.98} a^{0.81}$

• ITER suffers from two serious problems:

need for large plasma densities and betas

Plasma density histogram of ITER database

⁽courtesy of M. Greenwald)

confinement deterioration at large densities in JET

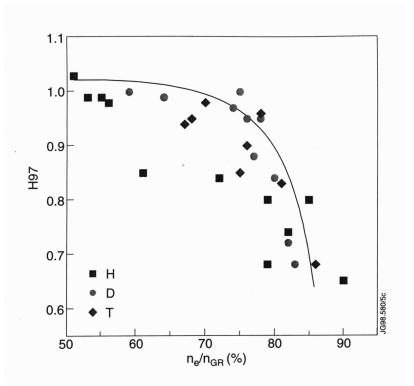
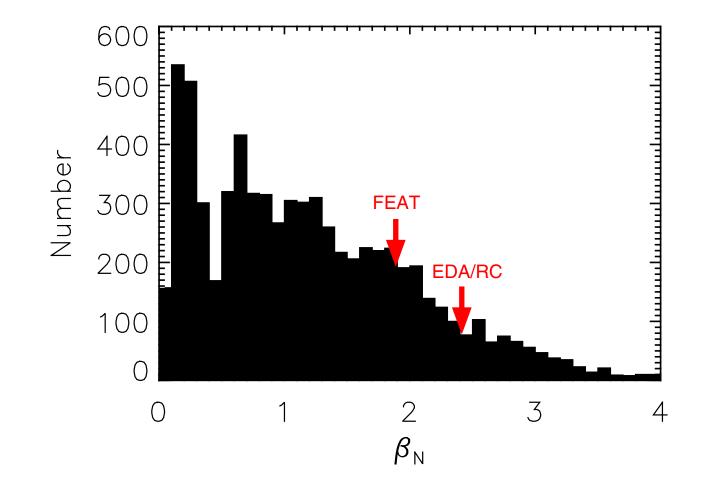



Figure 8. Confinement enhancement factor H97 as a function of the fraction of the GDL. Data taken in steady state, separated by isotope. The data set in the figure includes discharges with $1.7 \leq I_p$ (MA), B_t (T) ≤ 3 . All the discharges included have $q_{95} \approx 3.3$ and NB input power of 10–12 MW.

from: G. Saibene, et al., Nuclear Fusion 39, 1133 (1999)

β_{N} histogram of ITER database

(courtesy of M. Greenwald)

importance of the magnetic field

- Another serious difficulty is the large size of ITER, which is what has delayed the construction of this apparatus so far.
- An increase in the magnetic field could lessen all three of these problems.
- The ignition criterion

$$B^2 \beta \tau_E \propto B^{3.7} a^{2.7} \beta^{0.1} T^{-1.35} \propto G/N$$

 $(G=Q/(5+Q), Q \text{ is the energy gain, } N = < n^2 \overline{\sigma v} > / B^4 \beta^2) \text{ together}$ with the neutron wall loading $P_w \propto N B^4 \beta^2 a$ (@ constant A and k) and the confinement scaling law, gives (@ constant q_{95})

$$a \propto \frac{T^{0.51} (G/N)^{0.38}}{B^{1.32} (P_w/N)^{0.02}}$$
$$\beta_N \propto \frac{(P_w/N)^{0.51}}{B^{1.34} T^{0.25} (G/N)^{0.19}}$$
$$n_G \propto \frac{(P_w/N)^{0.49} (G/N)^{0.19}}{B^{1.66} T^{0.74}}$$

E. Mazzucato - Fire Workshop 2000

ELMy H-mode scaling of the ITER-FEAT reference discharge

		ITER-FEAT	Medium-B	FIRE-like B	Ignitor-like B
В	[T]	5.30	8.0	10.0	13.0
T_n	[keV]	9.0	8.0	8.0	7.0
а	[m]	2.00	1.09	0.81	0.53
R	[m]	6.20	3.39	2.51	1.63
Α		3.10	3.10	3.10	3.10
k		1.70	1.70	1.70	1.70
eta	[%]	2.50	1.48	1.35	1.40
eta_{p}		0.67	0.40	0.36	0.37
β_N		1.77	1.05	0.96	0.99
n _G		0.85	0.47	0.39	0.39
q 95		3.0	3.0	3.0	3.0
Ιp	[MA]	15.0	12.4	11.5	9.7
E_{TF}	[GJ]	40	15.0	9.4	4.4
Q		10	10	10	10
P_{w}	[MW/m	2] 0.50	0.50	0.75	1.50
P_{f}	[MW]	410	122	100	85
P_{LH}	[MW]	48	28	24	21

@ constant A, k, q_{95} and Q

Results

- All three high field tokamaks have lower values of β_N , and n_G than ITER-FEAT
- The dimensions of the case with 13 T are similar to those of Ignitor! Consequently, Ignitor could achieve Q =10 under the assumed ELMy H-mode conditions.

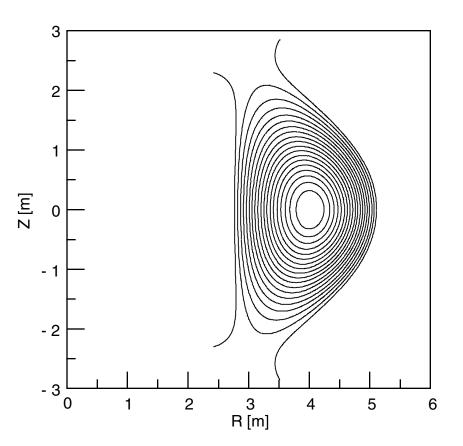
Caveat: is the ELMy H-mode accessible to Ignitor?

- The dimensions of the case with 10 T are larger than those of FIRE Caveat: this depends upon other FEAT assumptions as well (i.e., Z_{eff})
- In the case with B =8 T:
 - mechanical stresses are lower than in Ignitor and Fire
 - the TF current density is smaller than in Ignitor and Fire longer flattop (≈100 s)
 - dimensions are smaller than those of ITER-FEAT lower cost
 - a modest increase in A (≈3.5) could allow the use of superconducting coils

Scaling of the ITER-FEAT reflerence discharge

F	IRE @10T	FIRE @12 T	Ignitor
<i>B</i> [T]	10.0	12.0	13.0
<i>T_n</i> [keV]	8.0	8.0	7.0
<i>a</i> [m]	0.82	0.64	0.49
<i>R</i> [m]	3.14	2.45	1.38
A	3.80	3.80	2.80
k	1.77	1.77	1.83
eta [%]	1.34	1.27	1.52
$eta_{ m ho}$	0.48	0.45	0.29
β_N	1.01	1.04	0.91
n _G	0.46	0.41	0.34
q 95	3.0	3.0	3.0
<i>l</i> _p [MA]	10.1	9.5	10.7
E_{TF} [GJ]	12.3	8.4	3.3
Q	10	10	10
<i>P_w</i> [MW/m ²]	0.75	1.1	1.65
P_f [MW]	128	114	75
P_{LH} [MW]	30.5	27	17

@ constant q_{95} and Q


Scaling to ignition of the ITER-FEAT reflerence discharge

	Medium B	FIRE-like B	Ignitor-like B
<i>B</i> [T]	8.0	10.0	13.0
T_n [keV]	8.0	8.0	8.0
<i>a</i> [m]	1.26	0.93	0.65
<i>R</i> [m]	3.92	2.89	2.02
A	3.10	3.10	3.10
k	1.70	1.70	1.70
eta [%]	1.69	1.62	1.45
$eta_{ ho}$	0.45	0.44	0.39
β_N	1.20	1.15	1.03
n _G	0.62	0.55	0.44
q 95	3.0	3.0	3.0
<i>Ι</i> _ρ [MA]	14.3	13.2	12.0
E_{TF} [GJ]	23.0	14.5	8.4
Q	∞	∞	∞
P_w [MW/m ²	²] 0.75	1.25	2.00
<i>P_f</i> [MW]	246	223	175
P_{LH} [MW]	40	35	29

@ constant A, k, q₉₅

Conclusion

- The difficulties caused by the constraints of plasma physics and by the unavoidable high cost of a burning plasma experiment could be overcome by the use of magnetic fields ≥ 8 T.
- The best compromise appears to be a tokamak with a=1.1 m, R=3.85 m, A=3.5, k=1.8, B= 8 T and I=12 MA.

