Fast Particle Issues and Action Items

R. Nazikian

FIRE Workshop, May 1-3, 2000
(PPPL, Princeton, NJ)
Summary of recent work (White)

- Analysis of alpha loss using guiding center (ORBIT) code with collisions

- FIRE with $q(0) \approx 3$ has 6% prompt loss, 12% loss at 50 ms ($\approx T_s$)
- Loss concentrated at midplane

Action Items

- Calculate power density of prompt loss alphas on first wall using ORBIT and/or LORENTZ code

- Need to benchmark loss predictions to experiment
 - Ripple experiments on JET ($\delta_{16} \rightarrow \delta_{32}$), JFT-2M
Collective Instabilities

- Non-perturbative Instabilities in FIRE for positive and reverse magnetic shear (Gorelenkov)
 - Non-perturbative Alfvén eigenmodes relevant to FIRE
 - High-N STability analysis applied to q(0)<1 and q(0)>1 reference plasmas
 - q(0)<1 plasmas are unstable to low-n RTAEs
 - internal redistribution possible
 - q(0)>1 plasmas are always unstable to low-n RTAEs
 - modes strongest near q-min (as seen on TFTR)
 - internal redistribution possible
R&D Needs

- **Key issue is whether modes will be strong enough to significantly enhance loss**

- **Action Items**
 - Alpha simulation experiments needed on present devices
 - High field side minority RF heating in AT regimes
 - Develop global low-n code for RTAE stability: NOVA-2
 - benchmark to NSTX, TFTR, DIII-D, ...
 - Develop non-linear simulation capability
 - M3D (G. Fu)
 - reproduce bursting, chirping modes seen in experiment
 - benchmark against saturation level observed on TFTR, DIII-D, ...
 - Update projections for Burning Plasma
Non-linear TAE Physics and Resonance Overlap

- For high-n modes, need to assess role of resonance overlap in burning plasma

Action Items

» Determine if TFTR experiments are a good example of resonance overlap

- ORBIT analysis needed with multiple modes (White)
- compare to Fokker-Planck-MHD simulations (Todo)
- extrapolate to burning plasma
AT regimes with Alpha self-heating

- Production and sustainment of AT regimes with dominant electron heating

- R&D Needs
 - Characterize formation condition of ITB in present devices
 - ECH plasmas on DIII-D with ITB in the electron channel
 - IBW physics and ITB formation in FTU
 - ITB formation in C-MOD with RF heated H-minority
 - Will enhancement persist if sawtooth is stabilized?
 - Fluctuation diagnostics needed to assess role of turbulence and shear flow in the formation and evolution of these ITBs