Burning Plasmas Physics Issues Illustrated by FIRE Simulations

W.A. Houlberg
ORNL

Workshop on Physics Issues for FIRE
1-3 May 2000
Princeton, NJ

Outline

- WHIST simulations of FIRE
 - » Models
 - » Illustrations of physics issues in burning plasmas
 - Case 1: 30 MW short square-wave FWCD, H-mode
 - Case 7: 15 MW long programmed FWCD, H-mode
 - Case 3: 30 MW long square-wave FWCD, L-mode
- Conclusions

1-1/2-D Time-Dependent Transport Modeling

- 1-1/2-D time-dependent transport codes are ideal for:
 - » Scoping out the dynamics of access to attractive operating regimes
 - » Evaluating the capabilities of auxiliary heating, fueling, and CD systems to exploit those scenarios
 - » Identifying and avoiding the 'hurdles' of operation (e.g., density limits, tolerance to impurities, L-H transition, etc)
 - » Evaluating confinement with consistent profiles
- Simulation codes address these issues within the context of given, approximate confinement models:
 - » Similar to a real experiment, all devices show a wide range of behavior in simulations within a given transport model
 - » There are more 'knobs' available in simulation codes than real experiments - simulations only partially explore the operating space
- SIMULATIONS ARE NO SUBSTITUTE FOR REAL BURNING PLASMA EXPERIMENTS
- Designates unresolved 'issue'

WHIST: Confinement Model for This Study

- Neoclassical plus anomalous transport
- Fixed anomalous conductivity and diffusivity profiles:
 - » Normalized to yield global L-mode confinement (ITER-97L):

$$\tau_E^{97L} = 0.023 I^{0.96} B_T^{0.03} P^{-0.73} n_{19}^{0.40} M^{0.2} R^{1.83} \epsilon^{-0.06} \kappa^{0.64} \quad (s)$$

in (MA, T, MW, 10¹⁹ m⁻³, AMU, m)

- » Profile: $X_i(\rho) = X_p(\rho) = X(0)[1+4\rho^2]$, $D(\rho) = X(\rho)/2$
- Actual transport would show a richer profile variation
- Impurities (fixed broad profiles except for He):
 - » Be: fixed broad profile
 - » W: fixed broad profile
 - » He ash: neoclassical + anomalous transport and recycle
 - Actual profiles may be very peaked or very hollow

WHIST: L-H Transition Model

• L-H transition power threshold (IPB98-4):

$$P_{thr} = 0.082n_{20}^{0.69}B_T^{0.91}S^{0.96}M^{-1} \quad (MW)$$

in (10²⁰ m⁻³, T, m², AMU)

- Suppress edge transport when P_{sep} > P_{thr}:
 - » By a factor of 5 for $0.95 < \rho < 1.0$
 - » Extent similar to Parail model for JET (△/a ~ 0.1)
 - » ELM effects are lumped into the suppression factor
 - Generally this gives an H-factor ~ 2

WHIST: Fueling Models

- Outside pellet launch:
 - » Pellet velocity 1.0 km/s, ~ DIII-D injector
 - » Pellet ablation neutral gas and plasma shielding model agrees with observed pellet penetration
 - » Δ n profile assume same as ablation profile
 - Overly optimistic for H-mode cases
- Inside pellet launch:
 - » Assume uniform ∆n profile
 - ~ DIII-D observations, more info coming from ASDEX-U, DIII-D, JET
- D, T and He recycle:
 - » 90% of outgoing flux recycled inside separatrix
 - Need coupling to SOL codes for better treatment

WHIST: Heating and Current Drive Models

- Fast wave ICRF:
 - » Empirical match to strong and weak absorption limits
 - » Ehst-Karney current drive
- Fusion alphas:
 - » Multi-group time-dependent classical thermalization

FIRE Case 1: H-Mode, P_{FW} = 30 MW Square Wave **☞** Inertial, Startup Control, L-H Transition Hysteresis

WHIST FIRE 1999-07-07(03:19) Toroidal Field and Current Bt_0 Bt_0 Bt_0 I_tot By I_FW I_F

- Small I_{FW}
- Long decay time
- Inertial effects?

- P_{fus} 'overshoot'
- Control startup?
- With P_{sep} > P_{thr}/2 stays in H-mode
- P_{sep} < P_{thr}
- H-mode hysteresis?

FIRE Case 1: H-Mode, P_{FW} = 30 MW Square Wave **◆** Density Limit, He Accumulation and Confinement

- Moderate density peaking
- Far enough below n_{Gr}?
- Low helium density
- Sufficient pumping and recycle?
- $\tau_{p,He} >> \tau_{E} > \tau_{p,D}$
- $extstyle au_{ extstyle extstyle$
- $extstyle au_{p,D}$ dominated by edge recycle?

ornl

FIRE Case 1: H-Mode, $P_{FW} = 30 \text{ MW Square Wave}$

Sawteeth, Rampdown, T(ρ) Sensitivity to q

- T(0)~constant, <T> decays
- Termination by giant sawtooth
- Control rampdown?
- Sawteeth?

- Deep pellet penetration during rise peaks n, hollows T (~PEP mode)
- T peaks from reducing χ_i^{NC} (~0.3 χ_i^{an})
- Sensitivity to q?

FIRE Case 1: H-Mode, $P_{FW} = 30$ MW Square Wave Reverse Shear Control, Influence on MHD and τ

- q(0) rises and falls with bootstrap
- q_{min} decays through burn
- ✓ Influence of q(ρ) on MHD?

- Multiple reverse shear regions merge and collapse toward axis
- \leftarrow Influence of reverse shear on χ ?
- Control shear with CD?

FIRE Case 1: H-Mode, $P_{FW} = 30 \text{ MW Square Wave}$

✓ Influence of β, β_α and Peaking on Stability

- β peaking increases through burn
- **◆** Influence of β peaking on MHD?
- $rightharpoonup \beta_N$ overshoot MHD unstable?

- ullet Φ consumption during burn dominated by internal flux
- Resistive loss small due to high q(0)

FIRE Case 7: H-Mode, P_{FW} = 15MW Driven Burn **◆** Control Startup and Burn with P_{fw} Waveform

- P_{sep} just above P_{thr} during rise and well above durning burn
- P_{fus} well controlled

Peaking factors have long flattop

FIRE Case 7: H-Mode, P_{FW} = 15MW Driven Burn **☞** Reverse Shear Appears to be Predominant Feature

- Small bootstrap current overshoot
- Weaker reverse shear
- q_{min} > 1 for entire burn

FIRE Case 3: L-Mode, $P_{FW} = 30MW$ Driven Burn

Validation of Sawtooth Model/Effects

- P_{sep} > P_{thr} only during startup
- Sawtooth model?
- Low-n L-H transition necessary?

- Significant peaking even with sawtooth activity
- Density more peaked than H-mode
- **☞ MHD**, kinetic instabilities?

Conclusions

- There are many burning plasma physics issues to resolve:
 - » Transport modeling can illustrate them but not resolve them
- Inertial effects during startup can persist for very long times, making steady-state irrelevant in most cases
- Generation of transient, but persistent reverse shear conditions appears to be relatively easy:
 - » Understanding AT physics may be relevant even for scenarios not designed for AT operation
- Inside launch pellets may help to moderately peak the density profile
 - » Stronger effect is expected in L-mode than H-mode, but the models are still highly uncertain
- Only the dynamics and a few attendant issues have been identified here
- None of the cases have attempted to optimize the performance within the context of the assumed models