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Plasma Equilibrium Analysis
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e PF coll locations determined by functionality,
interferences, and proximity to plasma

* PF coil currents are determined to provide xx = 2.0

Ox = 0.7, and qos = 3.0, subject to uncertainties
in li, Bp, and yext

e generate equilibria at fiducial states; SOD, SOF,
SOB, EOB, EOC, and EOD, with flux consumption
between states determined by TSC

¢ heating and stresses in the PF coils provide
the primary limits on coil currents, and these were
combined with power supply analysis and TSC to
optimize a scenario



Vertical Stability and Control

e design passive structures to slow vertical instability
and provide a stability factor fs =1 + 19/ TR > 1.2,
and a growth time sufficiently long for feedback control

¢ passive stabilizers are made of 1.5 cm thick Cu, toroidally
continuous on the inboard, and in saddle configuration
on the outboard

e for low pressure plasmas (Bp = 0.1), over the range
0.7 <1i< 1.1, the stability factor and growth time are
1.3<fs<1.13 and 43 < tg(ms) <19

e utilize internal control coils for feedback on the plasma
vertical position, located just outside the inner VV

e control simulations indicate that for random disturbances
with AZrvws = 1 cm and step disturbances with AZ = 2 cm,
the peak power requirement is 5-10 MVA

lpeak = 55-75 kKA-turns
Vpeak = 50-75 V/turn
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FIRE Reference Discharge Scenario

assumptions/inputs main plasma parameters
—n(w,t) = no@®[ 1 - v*°I"°+ o —1b=6.44MA,Br=10T
—Nb = 0.3No —1i=0.85, qos = 3.2
— 3% Be impurity —Br=1.2,3=3%, Bn=2.42
—Tp*/1E=5 — Wih = 34.5 MJ, Po=50 MW
—teE=05s —nNe/ner=0.6
— Tedge = 500 eV — Te(0), Ti(0) = 18-19 keV
— time averaged sawtooth — fos = 25%
— Harris collisional bootstrap — Vioop = 0.1V

model

— Q = Prus/Paux = 11.4

— Ay(rampup) = 31.3 V-s
AyY(SOF—EOB) = 2.5 V-s

—ne(0) = 5.0 x 10**20 /m**3
ne(line) = 4.55
<ne>v =3.85

- <nHe> = 0.04<ne>



FIRE Reference Discharge Scenario
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Current Rampup, t=0-6 s
lp = 0.1-6.44 MA
Br=8.2-100T
Ne = .05—1.8x10**20
plasma diverts at 3.2 s
30 MW heating at 4.8 s

Heating to Burn and Flattop, t=6-27s
lp and B fixed
Ne = 1.8—5.0x10**20
heating dropped 30—22 MW
Po —50 MW, Q > 10
(NHe)—>4%(Ne), Zeti—1.4

Burn Termination and Rampdown,
t=27-34s
stop plasma fueling
Po drops and H—L mode
Paux is dropped 15—-10—5 MW
Ip reduced to 5.0, and then 0.1 MA



FIRE Reference Discharge Scenario
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Powers, MW
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FIRE Long Pulse DD Capability

o if Bris lowered to 4.0 T, and Ip is lowered to 2.0 MA,
the pulse length reaches 250 s

e the TPX physics objectives can be achieved

e taking

we get

parallel current density

14 MW of ICRF/FW
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2 x L-mode confinement
ne(0) = 1.35 x 10**20 /m**3
Te(0) = 15 keV

I(FW) = 300 kA (phased antenna)
I(LH) = 300 kA

(BS) = 775 kA

I[(OH) = 625 kA

Vloop =0.02V

Bn=2.5

Ay(total) = 14.6 V-s
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FIRE Burning AT Modes

e reducing Bt t0 6.75 T and Ip to 4.50 MA, a burning
advanced tokamak mode with Pwus = 160 MW can
be found

parallel current density

fos = 91%

I(LH) = 275 kA
I(FW) = 115 kA
Jaxis = 3.0

gmin = 2.6
Bn=4.5

Ne/ncr = 0.78
o-loss = 9.5%

total

e critical issues:
- ideal MHD, kink mode
- neoclassical tearing modes
- alpha particle losses
- heating/CD power
- plasma edge compatibility
- bootstrap current
- achievable Q

A

- plasma
- driven

total

safety factor

pressure




Summary

¢ PF colls designed for FIRE provide the reference
scenario with sufficient margin to all coil allowables
to compensate plasma uncertainties
e |n addition, the PF coils can provide
—al2Tand 7.7 MA discharge for 11 s
—a4 T and 2.0 MA discharge for 250 s

— burning AT modes at reduced Ip and Bt
e the passive stabilizer design in combination with internal
feedback coils provides sufficient vertical position
control with reasonable power
e full discharge scenarios for FIRE
— demonstrate Q=10 operation
— sensitivity to plasma parameter assumptions

— burn response/control

— plasma current and boundary evolution, flux
consumption, and feedback control

— used in conjunction with coil heating, stress, and
power supply analysis to optimize scenarios



