Poloidal Field Design and Plasma Scenarios for the Fusion Ignition Research Experiment (FIRE)

Charles Kessel National FIRE Design Study Team

18th IEEE/NPSS Symposium on Fusion Engineering Albuquerque, NM

October 27, 1999

http://fire.pppl.gov

- PF coil locations determined by functionality, interferences, and proximity to plasma
- PF coil currents are determined to provide κ_x = 2.0 δ_x = 0.7, and q₉₅ ≥ 3.0, subject to uncertainties in li, βp, and ψext
- generate equilibria at fiducial states; SOD, SOF, SOB, EOB, EOC, and EOD, with flux consumption between states determined by TSC
- heating and stresses in the PF coils provide the primary limits on coil currents, and these were combined with power supply analysis and TSC to optimize a scenario

Vertical Stability and Control

- design passive structures to slow vertical instability and provide a stability factor $f_s = 1 + \tau_g / \tau_{L/R} \ge 1.2$, and a growth time sufficiently long for feedback control
- passive stabilizers are made of 1.5 cm thick Cu, toroidally continuous on the inboard, and in saddle configuration on the outboard
- for low pressure plasmas ($\beta_p = 0.1$), over the range $0.7 \le l_i \le 1.1$, the stability factor and growth time are $1.3 \le f_s \le 1.13$ and $43 \le \tau_g(ms) \le 19$
- utilize internal control coils for feedback on the plasma vertical position, located just outside the inner VV
- control simulations indicate that for random disturbances with $\Delta Z_{RMS} = 1$ cm and step disturbances with $\Delta Z = 2$ cm, the peak power requirement is 5-10 MVA

I_{peak} = 55-75 kA-turns V_{peak} = 50-75 V/turn

FIRE Reference Discharge Scenario

assumptions/inputs	main plasma parameters
$-n(\psi,t) = n_0(t)[1 - \psi^{2.0}]^{0.5} + n_b$	– I _P = 6.44 MA, B⊤ = 10 T
- n _b = 0.3n _o	- li = 0.85 , q95 = 3.2
- 3% Be impurity	$-\beta_{P} = 1.2, \ \beta = 3\%, \ \beta_{N} = 2.42$
$- \tau_{\rm p}^* / \tau_{\rm E} = 5$	$-$ Wth = 34.5 MJ, P $_{\alpha}$ = 50 MW
$-\tau_{\text{E}} \approx 0.5 \text{ s}$	– ne / n _{Gr} = 0.6
- T _{edge} = 500 eV	– Te(0), Ti(0) ≈ 18-19 keV
- time averaged sawtooth	$- f_{bs} = 25\%$
- Harris collisional bootstrap model	- V _{loop} = 0.1 V
	$-Q = P_{fus}/P_{aux} = 11.4$
	$-\Delta \psi$ (rampup) = 31.3 V-s $\Delta \psi$ (SOF \rightarrow EOB) = 2.5 V-s
	– ne(0) = 5.0 × 10**20 /m**3 ne(line) = 4.55 ⟨ne⟩v = 3.85
	$-\langle n_{ m He} angle = 0.04 \langle n_{ m e} angle$

FIRE Reference Discharge Scenario

FIRE Reference Discharge Scenario

time, s

FIRE Long Pulse DD Capability

- if B_T is lowered to 4.0 T, and I_p is lowered to 2.0 MA, the pulse length reaches 250 s
- the TPX physics objectives can be achieved
- taking 14 MW of ICRF/FW 6MW of LHCD $2 \times L$ -mode confinement $n_e(0) = 1.35 \times 10^{**}20 / m^{**}3$ $T_e(0) = 15 \text{ keV}$ we get I(FW) = 300 kA (phased antenna) I(LH) = 300 kA

$$I(BS) = 775 \text{ kA}$$

 $I(OH) = 625 \text{ kA}$
 $V_{100p} = 0.02 \text{ V}$
 $\beta_N = 2.5$
 $\Delta \psi(\text{total}) = 14.6 \text{ V-s}$

FIRE Burning AT Modes

 reducing B⊤ to 6.75 T and I_p to 4.50 MA, a burning advanced tokamak mode with P_{fus} = 160 MW can be found

- critical issues:
 - ideal MHD, kink mode
 - neoclassical tearing modes
 - alpha particle losses
 - heating/CD power
 - plasma edge compatibility
 - bootstrap current
 - achievable Q

Summary

- PF coils designed for FIRE provide the reference scenario with sufficient margin to all coil allowables to compensate plasma uncertainties
- In addition, the PF coils can provide

- a 12 T and 7.7 MA discharge for 11 s

- a 4 T and 2.0 MA discharge for 250 s

– burning AT modes at reduced $I_{\rm P}$ and $B_{\rm T}$

- the passive stabilizer design in combination with internal feedback coils provides sufficient vertical position control with reasonable power
- full discharge scenarios for FIRE

demonstrate Q=10 operation

- sensitivity to plasma parameter assumptions
- burn response/control
- plasma current and boundary evolution, flux consumption, and feedback control
- used in conjunction with coil heating, stress, and power supply analysis to optimize scenarios