CRITERIA FOR CURRENT DRIVE STABILIZATION OF NEOCLASSICAL TEARING MODES

F. W. Perkins1 and R. W. Harvey2

FIRE Physics Workshop May 1-3, 2000

1 Princeton DIII-D Collaboration, General Atomics, San Diego 2CompX, P. O. Box 2672, Del Mar, CA

OUTLINE

- **Backgoround and Physics Approch**
- **Island Evolution Equation New Terms and Old**
- **Four Criteria**
- **Projections for Reactor-Scale Devices**
- **Conclusions**

PHYSICS OF ISLAND EVOLUTION EQUATION - 1

1. Assume magnetic field which has good helical flux surfaces χ = constant.

$$
B = \frac{g}{R}\phi + \frac{q}{q_o} \frac{\phi \times \nabla}{R} + \frac{\phi \times \nabla}{R}
$$

= (,)

$$
= - / q_o
$$

2. Assume form for helical flux function χ **- Not a complete calculation**

2 1 + cos(m) x = (,t) ⁼ nondimensional helical flux function ⁼ – 2 2 w o

3. Island width w **is really the helical flux function**

$$
w^2 = 2 \quad {}_{o}r_s (\hat{s} \qquad)^{-1}
$$

ISLAND EVOLUTION EQUATION - 2

1. Starting point is back emf equation for helical flux

$$
-\frac{1}{t} = \left[\begin{array}{cc} \mathbf{j} - \mathbf{j}_s - \mathbf{j}_d \end{array}\right]
$$

• **jh** is helical current density; **jbs**, jcd are emfs

2. Mechanical equilibrium requires that jh be a function of helical flux

- Analogous to Grad-Shafranov equation — 2 $\overline{x^2}$ = μ_o j()

- **3. Form flux surface average of back-emf equation.**
	- Only flux surface averages $\langle \,\, {\rm j_s} \rangle$ $\langle \,\, {\rm j_d} \rangle$ enter
	- **Equation is not balanced in detail; only in large-scale properties matter**
- **4. Form** α **-** ψ **integral of flux-surface averaged back-emf equation to obtain island evolution equation**

ISLAND EVOLUTION EQUATION - 3

1. Island Evolution Equation.

$$
\frac{\mu_{\circ}}{2C_1} = \frac{4 \mu_{\circ} Rq_{\circ} \mathbf{j}_{\circ}}{W \widehat{s} B} C_2 \left\{ 1 - K_1(\cdot, x) \right\}
$$

 $=$ jcd/ jbs $x = w/w_{cd}$ $w =$ island half-width w_{cd} = half width of current drive layer = modulation duty factor

2. Term in C_2 **is bootstrap driving term;** $C_2 = 8/3$

• saturated island width
$$
w_{sat} = \left(\frac{8 C_2}{\hat{s}}\right) \left(\frac{j_s R q \mu_o}{2B}\right) \frac{1}{\left(-\frac{1}{\hat{s}}\right)}
$$

• (-) m/r

3. Island size comparable to minor radius when $(0) \sim 0.05$.

CALCULATION OF STABILIZING TERM $K_1(x, \tau)$

• Model for driven current layer

$$
\mathbf{j} = \mathbf{j}_d \exp \left\{ -\frac{(\mathbf{r} - \mathbf{r}_s)^2}{w_{cd}^2} \right\} M()
$$
\n $\mathbf{j}_d = \frac{I_{cd}}{2^{3/2} r_s w_{cd}}$

- **First, average current density over helical flux surface**
- **Second, evaluate weighted integral over helical flux**

Do this as a function of island width and τ .

FOUR STABILITY CRITRIA

- **1. Stabilization of arbitrarily small islands (w << wcd)**
- **2. Limitation of growing island size to** $w \approx w_{cd}$ **.**
	- a) Δ' independent of current drive
	- **b) Current drive layer changes**

3. Reduction of already-established saturated islands to w wcd

 • wsat >> wcd **assumed**

STABILZATION OF SMALL ISLANDS

1. Results for K₁(x , τ) show that it has a finite value for $x \rightarrow 0$, assuming a **modulated source.**

Fig. 4. K1 versus "on"-time τ for the various island. widths w_{rel} /w marked on the diagram.

- Maximum value of $K_1(0, \tau)$ is $K_1 = 0.65$ with 50% "on" 50% "off"
- Stabilization will occur when $\Lambda = \text{j}_{cd}/\text{j}_{bs} > 1.6$

LIMITATION OF ISLAND GROWTH - NO MODULATION

• Evaluate K1(x,1) with no modulation and represent by analytic fit.

$$
K_1(x,1) = \frac{x}{1 + \left(\frac{2}{3}\right)x^2}
$$

• Non dimensional island evolution equation with $X = (w_{sat}/w_{cd}) >> 1$.

$$
\frac{dx}{dT} = -1 + X \left(\frac{1}{x} - \frac{1}{1 + (\frac{2}{3})x^2} \right) \quad x = \frac{3}{4} \left(\pm \sqrt{-2 - (8/3)} \right)
$$

• Criterion for two roots is $\sqrt{8/3}$

LIMITATION ON ISLAND GROWTH

- **No Modulation**
- **No current drive effect on**

• Reduction of Saturated Island Size

$$
x = 0.5 \{ X \pm (X^2 - 6 \ X)^{1/2} \}
$$

• Criterion for elimination of saturated islands $\Lambda > X/6$; $I_{cd} > 0.23 I_{bs}$

EFFECT OF CURRENT DRIVE LAYER ON A'

• Current Drive Layer centered on rational surface

$$
(-)_{cd} = (-)_{o} X \qquad \frac{dx}{dT} = -1 + X \left\{ \frac{1}{x} - \frac{2 + (\frac{2}{3})x^{2}}{1 + (\frac{2}{3})x^{2}} \right\}
$$

• Only one real root; growth to saturated level is prohibited

• Island size limited to $w < w_{cd}$ when > 0.6 .

APPLICATION TO ITER FEAT

- **ECCD maximized by off-axis launch location**
- For ITER FEAT with 30 MW ECCD; $j_{bs} \approx 0.07$ MA/m² $j_{cd} = 0.1$ MA/m²
- **Wide range of gyrotron frequencies work; above midplane lauch location**

- **For FIRE, experiments may have to be done at reduced BT because of gyrotron availability**
	- Key goal will be to establish β -limit for inductive and Advanced **discharges in a reactor like environment**

CONCLUSIONS

- **1. Correct Figure-of-Merit for ECCD stabilization of Neoclassical Tearing Modes is** $\Lambda = \mathbf{j}_{cd} / \mathbf{j}_{bs}$
	- \cdot Λ > 0.6 reduces island size to driven current layer thickness

 \cdot Λ > 1.6 (with modulation) completely stabilizes modes

- **2.** Most effective physics is changing Δ' by thin, unmodulated current drive **layer centered on rational surface**
- **3. Technical and wave propagation requirements can be met for ITER-FEAT**
	- **FIRE experiments at reduced field can establish experimental basis for design of an ECCD/NTM capability for Integrating Inductive or Advanced tokamak**