Recent Advances in Indirect Drive ICF Target Physics

Presentation to 20th IAEA Fusion Energy Conference

John Lindl and Bruce Hammel Lawrence Livermore National Laboratory

November 1-6, 2004

Outline

- Ignition Introduction
- NIF status
- Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication
- Plan for experiments leading to first ignition target shots in 2010

Introduction

There are two principal approaches to compression in Inertial Confinement Fusion

Inertial Confinement Fusion uses direct or indirect drive to couple driver energy to the fuel capsule

Spherical ablation with pulse shaping results in a rocket-like implosion of near Fermi-degenerate fuel

Spherical collapse of the shell produces a central hot spot surrounded by cold, dense main fuel

Introduction

The scale of ignition experiments is determined by the limits to compression

- Pressure is limited to P(Max)~100 Mbar by Laser Plasma Interaction (LPI) effects
- Given the pressure limits, hydrodynamic instabilities limit implosion velocities to

 $V_{imp} < 4 \times 10^7 \, cm/sec$

and this limits the maximum compression

• Symmetry and pulse shaping must be accurately controlled to approach the maximum compression

The impact of most effects that degrade an implosion can be specified as a hot spot perturbation amplitude

- Long Wavelength Perturbations
 - Hohlraum asymmetry
 - Pointing errors
 - Power Imbalance
 - Capsule misplacement in chamber
- Short Wavelength Perturbations
 - DT ice roughness
 - Ablator roughness
 - Ablator microstructure

The hot spot penetration is the fraction of the hot spot perturbed by the various sources of error

Introduction

Introduction

The "ignition island" size provides an integral measure of the robustness of the NIF ignition designs

Outline

- Ignition Introduction
- NIF status
 - Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication
 - Plan for experiments leading to first ignition target shots in 2010

The National Ignition Facility

The beampath infrastructure for all 192 beams is complete and the first four beams have been activated for experiments

NIF Project

NIF Target Chamber upper hemisphere

The National Ignition Facility

NIF Project

First four NIF beams installed on the target chamber

Quad 31b beamtubes and optics are installed and operational

View from inside the target chamber

NIF Project

Target positioner and alignment system inside target chamber

NIF Project

NIF has demonstrated the pulse shaping precision and flexibility required for Ignition experiments

The National Ignition Facility

The NIF Early Light (NEL) commissioning of four laser beams has demonstrated all of NIF's primary performance criteria on a per beam basis

NIF Project

- 21 kJ of 1w light (Full NIF Equivalent = 4.0 Mjoule)
- 11 kJ of 2w light (Full NIF Equivalent = 2.2 Mjoule non-optimal crystals)
- 10.4 kJ of 3w light (Full NIF Equivalent = 2.0 Mjoule)
- 25 ns shaped pulse
- < 5 hour shot cycle (UK funded shot rate enhancement program)</p>
- Better than 6% beam contrast
- Better than 2% beam energy balance
- Beam relative timing to 6 ps

NIF Indirect Drive target schematic

Outline

- Ignition Introduction
- NIF status
- Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication
- Plan for experiments leading to first ignition target shots in 2010

Energetics

The Indirect drive ignition point design continues to evolve to optimize coupling efficiency

The National Ignition Facility

Cocktail ignition target burns with near 1D yield in 3D calculations with both asymmetry and surface roughness

computers

Energetics

Energetics

Omega experiments show larger albedo for cocktail walls made of $((U Nb_{0.14})_{0.6}, Au_{0.2}, Dy_{0.2})$

LEH shields provided a 20% increase in capsule radiation flux at Nova and an extra symmetry tuning degree of freedom

Energetics

500 սm shield **1600** μ**m 1200** μm diameter **2300** μm -2300 μm -

1 ns square pulse - identical pointing

- LEH shields will be retested on Omega in NIF-like multicone geometry
- Similar advantages possible for NIF ignition hohlraums depends on beam propagation with added plasma source

Energetics

Enhancements in hohlraum coupling efficiency expected by 2010 will substantially increase the ignition island

The National Ignition Facility

At 3w, drive measurements and Lasnex simulations agree closely over >two orders of magnitude in T_{R}^{4}

300 1000 273 eV LEH power [GW/sr] Lasnex peak Tr (eV) 800 250 600 Lasnex 400 200 Lasne 200 Experiment 150 150 200 250 300 3 0 2 1 Experimental peak Tr (eV) t (ns)

Vacuum and gas-filled hohlraums with 2.2 ns shaped pulses (3:1 and 5:1 contrast ratio)

Lasnex can predict hohlraum drive to ±10%

Nova and Omega Experiments

Energetics

An international team has successfully activated hohlraum diagnostics at NIF and the first hohlraum experiments are in close agreement with calculations

Energetics

Outline

- Ignition Introduction
- NIF status
- Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication
- Plan for experiments leading to first ignition target shots in 2010

Symmetry

Implosion symmetry is an important issue for high convergence ratio targets

Small nonuniformity when outershell is at large radius

Symmetry

Plasma motion and the laser entrance hole (LEH) result in a time variation in capsule symmetry

Optimization of symmetry will require close coordination of detailed design calculations and precision experimental measurements

Symmetry

The National Ignition Facility

Be capsule fuel region at ignition

Diagnostic techniques developed at Nova and Omega will provide overlapping and complete coverage of irradiation asymmetry history on the NIF

Symmetry

The National Ignition Facility

Outline

- Ignition Introduction
- NIF status
- Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication
- Plan for experiments leading to first ignition target shots in 2010

Implosion Dynamics

The ablation front hydrodynamic instability can destroy an imploding shell

Implosion Dynamics

Recent 3D calculations (having both asymmetry and surface roughness) burn with near 1D yield

 Capsule simulations have asymmetry and fabrication perturbations

- 3D asymmetry inferred from integrated hohlraum simulation
- Nominal "at spec" perturbations on ice and ablator in low, intermediate, and high modes
- Gave 21 MJ (90% of 1D calculation)

Implosion Dynamics

Be Capsule designs using graded dopants for preheat shielding have the best calculated performance

The National Ignition Facility

Tolerance to ice roughness is also better (5 μ m compared to 1 μ m)

Several developments have led us to adopt the current Beryllium capsule point design

- With given laser & hohlraum, beryllium absorbs 35% more energy than plastic
- Beryllium has better short wavelength stability, especially with graded dopant - an experimental program will be required to establish the acceptable level of Be microstructure
- Many previous difficulties in Be fabrication have been solved (filling, diagnosing layer)
- A staged cryo system with an initial fill tube capability (or fill and plug) for warm transport, provides the best opportunity for early ignition experiments
- Although, the fill tubes are a design and target fabrication complexity, current simulations and fabrication progress lead us to conclude we can make them small enough for success - an experimental program is needed to test the calculations

Outline

- Ignition Introduction
- NIF status
- Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication
- Plan for experiments leading to first ignition target shots in 2010

We have produced graded Cu-doped Be capsules at NIF-scale by sputter deposition

The surfaces of our first graded dopant Be capsules don't meet specifications, but improvements are planned

High mode morphology

The surfaces of our first graded dopant Be capsules don't meet specifications, but improvements are planned

The National Ignition Facility

- We plan to investigate use of ion bombardment and other methods as means to improve surface finish and coating density
- In FY05 LANL will study shell polishing

Be is non-permeable, and requires a fill hole through the ~100- μ m-thick ablator for filling

The National Ignition Facility

Simulations indicate that a 10 μ m tube with a 3 μ m hole has an acceptable impact on the implosion

- Uniformly doped Be(Cu) capsule
- Calculation ignites and burns to same yield as 1D clean --21.7 MJ
- Simulations in progress with gradeddoped capsule, larger hole

The target is filled through the small fill-tube using a self-contained fuel reservoir

The DT fuel layer in optically opaque beryllium has been recently characterized with x-ray refraction

The best cryo layers are formed near the triple point

The lower gas fill obtained with lower temperature cryo fuel layers lowers the energy required for ignition

The National Ignition Facility

The ignition island is increased by improving target fabrication

Outline

- **Ignition Introduction** ٠
- NIF status
- Target Requirements and recent advances
 - Energetics
 - Symmetry
 - Implosion dynamics
 - Target Fabrication

Plan for experiments leading to first ignition target shots in 2010

Key NIF ignition experiments begin in FY07 following first cluster completion and full system ignition experiments start in FY9-10 following project completion

- The first 4 beams of NIF have been activated and used for initial hohlraum experiments. These beams meet all of NIF's primary performance criteria on a per beam basis. The first cluster (48 of 192 beams) will be completed late in FY06 and the full laser system will be available for experiments in FY09
- Numerical simulations, benchmarked by over 15,000 experiments on Nova, Omega, Z and other facilities, provide a first principles description of x-ray target performance (except for laser-plasma interactions)
- A Gold hohlraum with a Be capsule has substantial ignition margin at full NIF performance
- Significant enhancements in ignition target performance, including cocktail hohlraums and laser entrance hole shine shields, are being explored and we expect many of these to be incorporated into the baseline targets by 2010