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DIII–D PROGRAM GOAL: TO ESTABLISH THE SCIENTIFIC 
BASIS FOR THE OPTIMIZATION OF THE TOKAMAK
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 Strengthening the scientific basis for next-generation burning 
 plasma experiments (ITER)

 Establishing the scientific basis for steady-state tokamak operation

 Investigating fundamental properties of tokamak plasma

Highlights presented here are organized around three themes:



DIII–D EXPERIMENTS INCREASE CONFIDENCE
IN REACHING THE ITER PERFORMANCE TARGETS
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  Stationary discharges with: 
 — Performance >40% higher 
  than the ITER baseline 
  scenario
 — Performance equal to 
  the ITER performance 
  target obtained at 30% 
  lower equivalent current

G = βNH89/q95 
2
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STATIONARY HIGH PERFORMANCE ACHIEVED UNDER 
CONDITIONS SIMILAR TO THE ITER BASELINE SCENARIO
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 Key advance is operation at higher pressure (βN = 2.8), due to initiation at a relatively 
 benign resistive instability (m=3/n=2 tearing mode) before the onset of sawteeth

ITPA Joint Experiment Wade – Wed. PM Talk
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STATIONARY HIGH PERFORMANCE ACHIEVED UNDER 
CONDITIONS SIMILAR TO THE ITER BASELINE SCENARIO
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Projection to ITER
βN = 2.8 q95 = 3.2  n/nG = 0.85

B = 5.3 T I = 13.9 MA   

ITER89P 2.4 780  60 12.9
IPB98y2 1.47 740 18.5 39
DS03 1.25 700 0 ∞

*DIII–D Value
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CANDIDATE HYBRID SCENARIO DISCHARGES REACH ITER
PERFORMANCE TARGET AT REDUCED EQUIVALENT CURRENT
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 Hybrid scenario goal is maximum 
 fusion energy (or neutron 
 fluence) per inductive pulse

 DIII–D approach is reduced current
 and higher normalized pressure, up
 to no-wall pressure limit (~4 li)

 Key advance is again the initiation of
 a resistive mode (m=3/n=2), which 
 prevents the onset of sawteeth and 
 allows high normalized 
 pressure (βN ≤ 3.2)
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ITPA Joint Experiment Wade – Wed. PM Talk
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CANDIDATE HYBRID SCENARIO DISCHARGES REACH ITER
PERFORMANCE TARGET AT REDUCED EQUIVALENT CURRENT
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DIMENSIONLESS SCALING EXPERIMENTS SHOW
ENERGY CONFINEMENT IS INDEPENDENT OF BETA
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 β scalings for direct experiments and 
 database analysis are very different

DIII–D
JET
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 Absence of β dependence is consistent 
 with drift-type turbulence



STATIONARY HIGH PERFORMANCE DISCHARGES HAVE
BEEN OBTAINED OVER A WIDE RANGE OF PARAMETERS
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 Pressure limit higher without sawteeth

 Fusion performance maximizes at low q95

 Confinement drops slightly with 
 increasing density

βN

G=βNH89/q95
2
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ROBUST STABILIZATION OF m=2/n=1 TEARING MODE
OBTAINED WITH ELECTRON CYCLOTRON CURRENT DRIVE
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 This instability sets the operational
 β limit in the ITER baseline scenario. 
 Locking of this mode often leads to 
 disruptions ⇒ stabilization would avoid 
 more extreme mitigation measures 

 Stabilization is obtained at high pressure
 (βN = 2.8, βP = 1.1) 
 

 Stabilization is optimized automatically
 by active feedback system to place the 
 ECCD at the location of the instability

Petty – Thurs. PM Talk
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STOCHASTIC EDGE ELIMINATES LARGE TYPE-I ELMS
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 Non-axisymmetric fields (n=3) have
 been used to eliminate ELMs
 — Edge instability changes character
 — Power flow is still to the divertor
 — Technique applied in ITER shape

 Impulsive heat flux reduced 
 by at least a factor of 3

 Confinement and edge pedestal 
 height unchanged

Evans – Tues. PM Talk

0 1 2 3 4 5 6

0 1 2 3 4 5 6

W (MJ)

3.0 3.5 4.0 4.5
Time (s)

Div. Dα (a.u.)

n=3 Field
Amplitude

n  (1019/m3)

0

2

4

6

8
119700 (coils off) 119690 (coils on)

0.0
0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8



CARBON MIGRATION USING 13C AS A TRACER INDICATES
TRITIUM CO-DEPOSITION MAY BE LOCALIZED

AT THE INNER DIVERTOR
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 Measured deposition highly localized at inner 
 divertor; toroidally symmetric

 Modeling of deposition, carbon plume,
 and core carbon inventory requires flow 
 velocity M~0.4 at the separatrix in the
 direction of the inner divertor
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 Full non-inductive 
 discharges in present 
 tokamaks that project to 
 high fusion gain are a 
 necessary first step

 Control of discharge 
 parameters and instabilities 
 will be an essential 
 component of a 
 steady-state tokamak
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(qmin ~1, q95 ~3)
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STEADY-STATE TOKAMAK OPERATION REQUIRES A COMPROMISE
BETWEEN FUSION PERFORMANCE AND BOOTSTRAP CURRENT
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FULL NON-INDUCTIVE DEMONSTRATION
DISCHARGE HAS BEEN OBTAINED

248-04/TCL/rs
NATIONAL FUSION FACILITY

S A N D I E G O

DIII–D

 Pressure at or above the 
 no-wall pressure limit 
 (βN≥4 li) for high fusion power

 Elevated qmin (>1.5) for 
 enhanced bootstrap 
 current (fBS ~0.6)

 Reduced current (q95 ~5) 
 to minimize non-inductive 
 current requirements

βN

4 li
H89

Vsurf (V)

120096

ITPA Joint Experiment                   Murakami – Tues. AM Talk
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FULL NON-INDUCTIVE DEMONSTRATION
DISCHARGE HAS BEEN OBTAINED
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B = 5.3 T

I = 9.3 MA

n = 0.63×1020 m–3

PNB = 33 MW

PEC = 20 MW

PIC = 20 MW

Pfus = 340 MW

Type I ELMs

βN = 2.8

q95 = 5.4

HDS03 = 1.28
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ITPA Joint Experiment                   Murakami – Tues. AM Talk

βN

4 li
H89

Vsurf (V)

120096

G ITER Steady-State Target

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (s)

0
1

2

3
4

–0.1

0.0

0.1

0.2
0.0
0.1
0.2
0.3
0.4
0.5

0

5

10

15

PNB (MW)

I × 10 (MA)

PEC (MW)
<PNB> (MW)



MEASUREMENTS AND MODELING INDICATE FULL NON-INDUCTIVE
CURRENT SUSTAINMENT WITH GOOD ALIGNMENT
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 Surface voltage from equilibrium
 reconstructions shows no net inductive flux
 (but note ℜ = 0.15 µΩ ⇒ 15 mV = 100 kA)

 Internal electric field determined from
 equilibrium reconstructions shows
 little spatial structure ⇒ non-inductive
 sources well aligned to total current

 Toroidal electric field inferred directly from
 MSE data confirms equilibrium analysis

 Modeling gives nearly full 
 non-inductive current:
 — Bootstrap  59%
 — Neutral Beam 31%
 — Electron cyclotron 8%
 — Inductive 2%
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TRANSFORMERLESS OPERATION SHOWS CONTROL OF
HIGH BOOTSTRAP FRACTION PLASMAS WILL BE CHALLENGING
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 The desired steady-state operating
 point may not be a stationary solution
 to the coupled fluid equations. If not, 
 active control is required.

 Inductive control of the plasma 
 current may be desirable ⇒ 
 non-inductive overdrive will 
 be required. 
 

 At high safety factor (q95~10) and
 high qmin (~3), the bootstrap 
 current fraction is >80%.
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ACTIVE RESISTIVE WALL MODE STABILIZATION ALLOWS
EXTENDED OPERATION ABOVE THE NO-WALL PRESSURE LIMIT
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 Rotation is effective in stabilizing
 the RWM up to the ideal-wall limit
 in many cases

 Rotation is ineffective in the case 
 shown, perhaps due to a reduction 
 in the number of rational surfaces 
 in the plasma interior (lower q95)

 Active feedback using the 12 internal 
 coils in n=1 symmetry allows 
 operation above the no-wall limit 
 for ~200 growth times
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PROGRESS IN UNDERSTANDING TOKAMAK PHENOMENA
IS BEING MADE IN MANY AREAS
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 Magnetic geometry changes the character of the sawtooth instability

 Development of diagnostics and theory to understand the H–mode pedestal

 Electron heat transport exhibits no threshold behavior

 Plasma fueling is dominated by neutrals originating in the divertor

 Plasma rotation is strongly changed by ECH (no external torque applied)

 Gas jets mitigate disruptions safely despite a short penetration length



SAWTOOTH INSTABILITY CHANGES CHARACTER
WITH CROSS-SECTION SHAPE
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Lazarus – Fri. AM Poster

Indented plasmas:
— Electron and ion temperatures 
 remain close

— Significant evolution of the 
 central current density

Oval plasmas:
— Ion temperature significantly
 above electron temperature
 despite roughly equal heating

— No significant evolution of the
 central current density

Te (keV)

Ti (keV)

Pitch Angle (deg)



PLASMAS THAT VIOLATE THE MERCIER CRITERION
DO NOT SUPPORT AN ELECTRON PRESSURE GRADIENT
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 Mercier limit occurs at q<1

 Local electron heating results in
 strongly increased gradient

 Mercier limit occurs at q>1

 Local electron heating results in
 almost no change in gradient

Lazarus – Fri. AM Poster
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PREDICTIVE UNDERSTANDING OF THE EDGE PEDESTAL REQUIRES
CONTINUING IMROVEMENTS IN MEASUREMENT AND THEORY
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 Need continuous electron
 pressure measurement

Pedestal Pressure Pedestal Current Stability Theory

 Need improved
 time resolution

 Need nonlinear
 (time-dependent) theory
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CONCLUSIONS
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 Performance projections for ITER using the present design basis are 
 conservative. DIII–D results provide confidence in reaching the ITER performance
 targets and optimism that they can be exceeded. Technical challenges are 
 being addressed actively.

 A steady-state tokamak scenario has been demonstrated in DIII–D
 that projects to modest fusion gain in ITER. The ability to control such 
 plasmas near the performance boundaries is the next task.

 The DIII–D facility is providing unprecedented views of tokamak 
 phenomena, enabling the development and validation of theories and 
 models of plasma behavior.
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