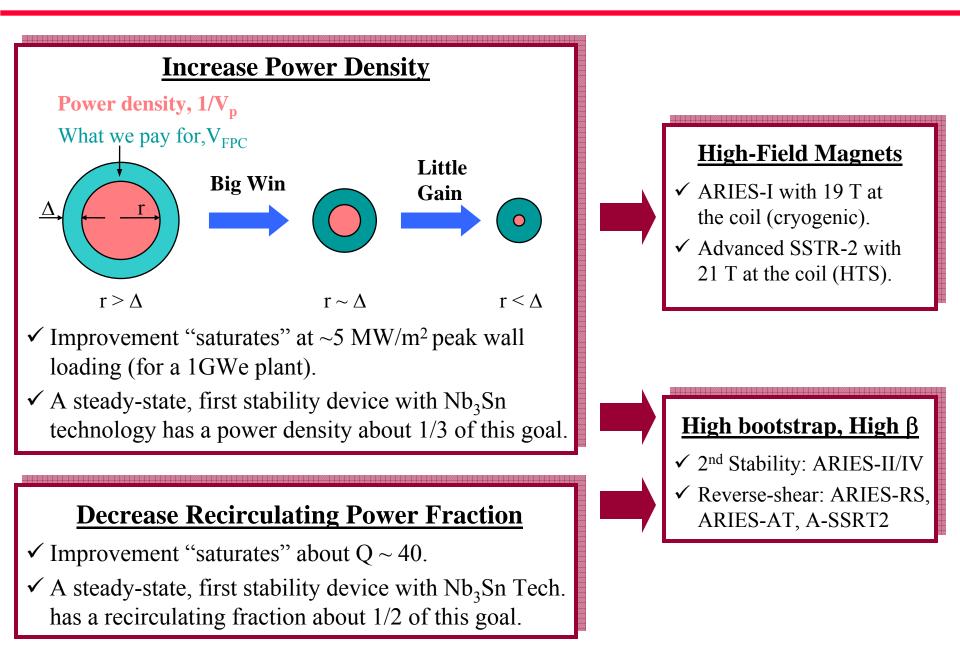
Optimization of a Steady-State Tokamak-Based Power Plant

Farrokh Najmabadi University of California, San Diego, La Jolla, CA

IEA Workshop 59 "Shape and aspect ratio optimization for high β , steady-state tokamaks"

February 14-15, 2005 General Atomic, San Diego, CA

Electronic copy: http://aries.uscd/edu/najmabadi/ ARIES Web Site: http://aries.ucsd.edu/ARIES/


Physics analysis of power plants continue to improve and power plant studies provide critical guidance for physics research

- Identify key impact of physics configuration on power plant performance
 - ✓ High power density
 - ✓ Low recirculating power
 - ✓ Self-consistency of overall configuration
- Understand trade-offs of physics/engineering constraints:
 - ✓ Location of conductor/stabilizer (blanket constraints *vs* allowed κ)
 - \checkmark Core/divertor radiation *vs* in-vessel components constraints
- There is a big difference between a physics optimization and an integrated systems optimization

Improvements "saturate" after certain limit

Directions for Improvement

Reverse Shear Plasmas Lead to Attractive Tokamak Power Plants

First Stability Regime

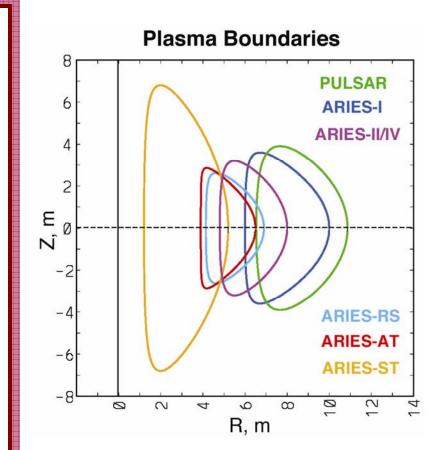
- Does Not need wall stabilization (Stable against resistive-wall modes)
- ► Limited bootstrap current fraction (< 65%), limited β_N = 3.2 and β =2%,
- > **ARIES-I:** Optimizes at high A and low I and high magnetic field.

Reverse Shear Regime

- Requires wall stabilization (Resistive-wall modes)
- \triangleright Excellent match between bootstrap & equilibrium current profile at high β .
- Internal transport barrier
- ► **ARIES-RS** (medium extrapolation): $\beta_N = 4.8$, $\beta = 5\%$, $P_{cd} = 81$ MW (achieves ~5 MW/m² peak wall loading.)
- ARIES-AT (aggressive extrapolation): $\beta_N = 5.4$, β=9%, $P_{cd} = 36$ MW (high β is used to reduce peak field at magnet)

Evolution of ARIES Designs

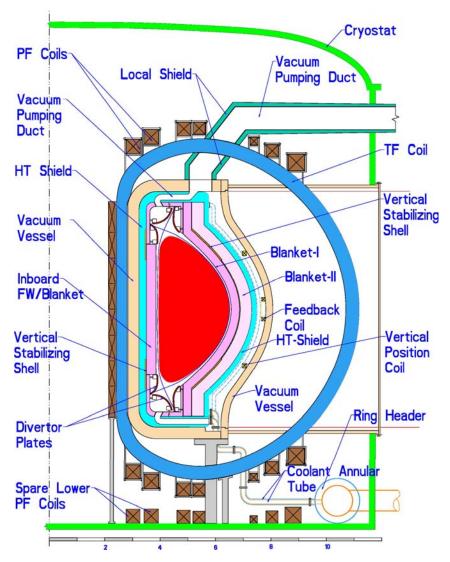
	<u>1st Stability,</u> <u>Nb₃Sn Tech.</u>	<u>High-Field</u> <u>Option</u>	<u>Reverse Shear</u> <u>Option</u>	
	ARIES-I'	ARIES-I	ARIES-RS	ARIES-AT
Major radius (m)	8.0	6.75	5.5	5.2
β ($\beta_{\rm N}$)	2% (2.9)	2% (3.0)	5% (4.8)	9.2% (5.4)
Peak field (T)	16	19	16	11.5
Avg. Wall Load (MW/m ²)	1.5	2.5	4	3.3
Current-driver power (MW)	237	202	81	36
Recirculating Power Fraction	0.29	0.28	0.17	0.14
Thermal efficiency	0.46	0.49	0.46	0.59
Cost of Electricity (c/kWh)	10	8.2	7.5	5


Approaching COE insensitive of power density

Approaching COE insensitive of current drive

ARIES Aspect Ratio Optimization

- For <u>first-stability devices</u> (monotonic q profile), optimum A is around 4 mainly due to high current-drive power.
- For <u>reverse-shear</u>, system code calculations indicate a broad minimum for A ~ 2.5 to 4.5
- Detailed engineering design has always driven us to higher aspect ratios (A ~ 4).
 - ✓ Inboard radial build is less constraining;
 - ✓ More "uniform" energy load on fusion core (lower peak/average ratios).



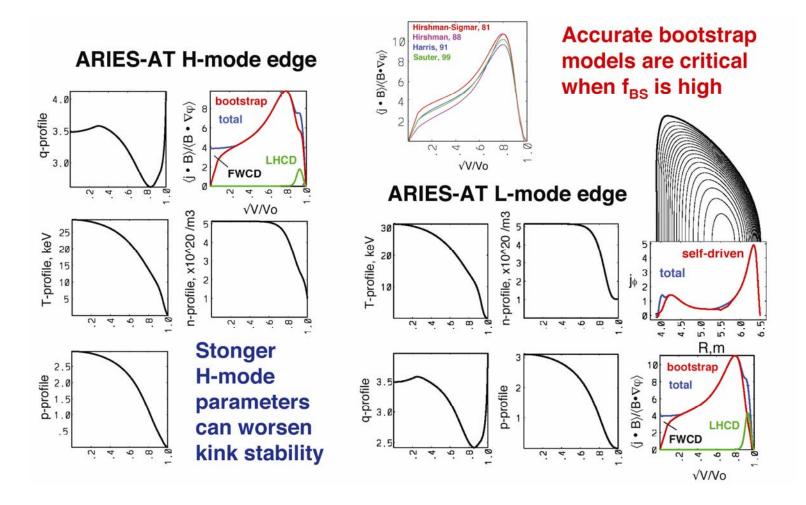
Physics analysis of power plants continue to improve and power plant studies provide critical guidance for physics research

- Identify key impact of physics configuration on power plant performance
 - ✓ High power density
 - ✓ Low recirculating power
 - ✓ Self-consistency of overall configuration
- Understand trade-offs of physics/engineering constraints:
 - ✓ Location of conductor/stabilizer (blanket constraints *vs* allowed κ)
 - \checkmark Core/divertor radiation *vs* in-vessel components constraints
- There is a huge difference between a physics optimization and an integrated systems optimization

Major Plasma Parameters of ARIES-AT

A = 4	$\beta = 9.2\%$
R = 5.2 m	$\beta_{\rm N} = 5.4$ [‡]
a = 1.3 m	$\beta_{\rm p} = 2.8$
$I_{p} = 12.8 \text{ MA}$	Pp
$B_{\rm T} = 5.9 {\rm T}$	$f_{BS} = 0.89$
	$P_{CD} = 36 \text{ MW}$
$\kappa_x = 2.2$	
$\delta_x = 0.84$	$n_e = 2 \ X 10^{20} \ m^{-3}$
$q_{axis} = 3.5$	$H_{\rm ITER-89P} = 2.6$
$q_{min} = 2.4$	1121-071
$q_{edge} \leq 4$	$P_{f} = 1755 \text{ MW}$
li(3) = 0.3	
$p_0 / = 1.9$	

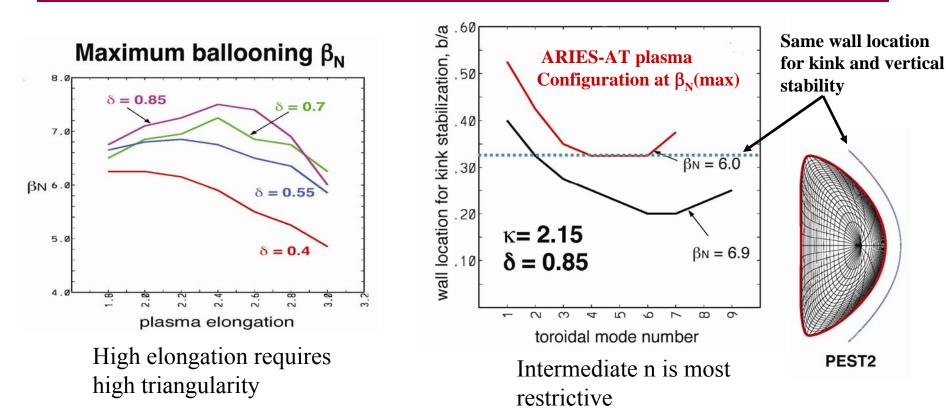
* ARIES-AT plasma operates at 90% of maximum theoretical limit


Detailed plasma analysis performed for ARIES-AT and critical issues and trade-offs were identified*

- ✓ Equilibria
- ✓ Ideal MHD Stability
- ✓ Neoclassical Tearing Mode
- \checkmark RWM and Plasma Rotation
- ✓ Heating & Current Drive
- \checkmark Vertical Stability and Control
- ✓ PF coil Optimization
- ✓ Plasma Transport
- ✓ Plasma edge/SOL/Divertor
- ✓ Fueling
- ✓ Ripple losses
- ✓ 0-D Start-up with and without solenoid
- Disruption and thermal transients

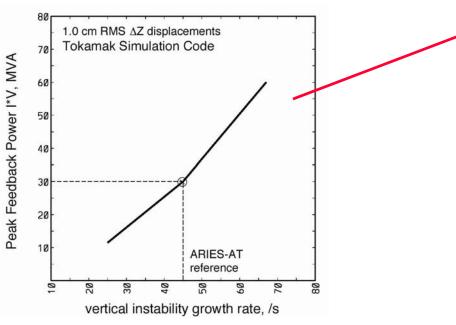
* See ARIES Web Site for details

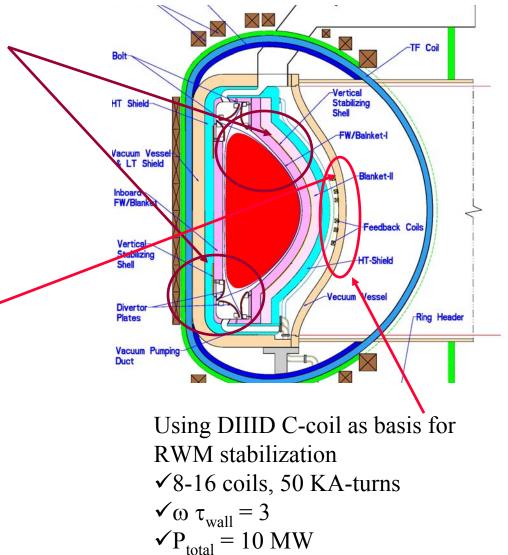
Equilibria were produced to provide input to current-drive, Stability and Systems Studies*

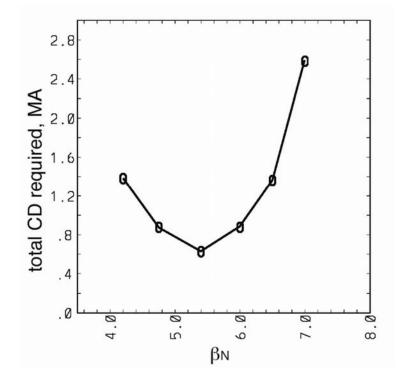


* High resolution Equilibria are essential. Plasma boundary was determined from free-boundary equilibrium with the same profiles at ~ 99.5% flux surface.

Plasma elongation and triangularity strongly influence achievable β

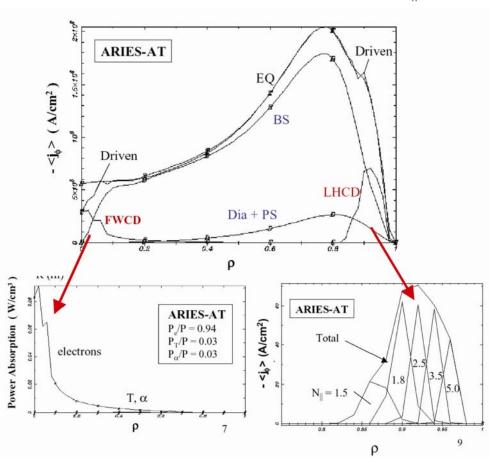

- Low-n link and high-n ballooning was performed by:
 - ✓ PEST2 for $1 \le n \le 9$
 - ✓ BALMSC for $n \to \infty$
 - ✓ MARS for n = 1 rotation


- Examined the impact of plasma shape, aspect ratio, and j and p profiles.
- A data base was created for systems analysis.

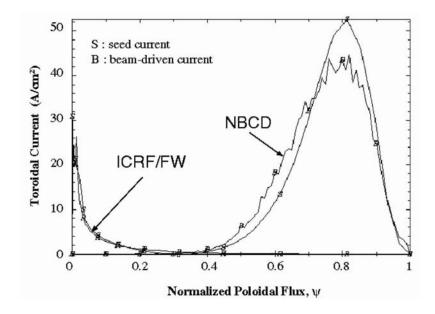

Location of shell and feedback coils is a critical physics/engineering interface

- Passive stability is provided by tungsten shells located behind the blanket (4 cm thick, operating at 1,100°C)
- Thinner ARIES-AT blanket yields $\kappa_x = 2.2$ and leads to a much higher β compared to ARIES-RS

Other parameters also influence plasma configuration and optimization



Minimum current-drive power does not occur at highest $\beta_{\rm N}$

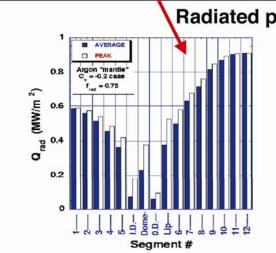

 \Rightarrow Another variable in the optimization

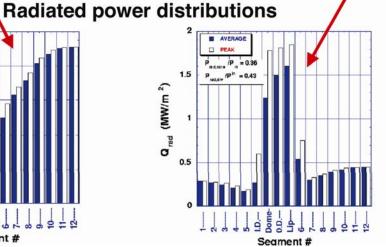
ARIES-AT utilizes ICRF/FW and LHCD

ICRF/FW: $P_{FW} = 5$ MW, 68 MHz, $n_{\parallel} = 2$ LHCD: $P_{LH} = 37$ MW, 3.6 & 2.5 GHz, $n_{\parallel} = 1.65-5.0$

Alternative scenario with NBI

120 keV NBI provides rotation and current drive for $\rho > 0.6$ with $P_{NB} = 44$ MW and $P_{FW} = 5$ MW (NFREYA)


Radiated power distribution should balanced to produce optimal power handling


➤ A highly radiative mantle is NOT the optimum solution. First wall usually has a much lower heat flux capability than the divertor:

✓ For ARIES AT: $Q_{FW}^{peak} \le 0.45 \text{ MW/m}^2$ while $Q_{DIV}^{peak} \le 5 \text{ MW/m}^2$

▶ L-Mode Edge is preferable (higher edge density, no pedestal at the edge).

f _{rad} core	Q _{FW} ^{peak}	f _{rad} ^{div}	Q _{div} peak,OB	Q _{div} peak,IB	$\mathbf{f}_{Ar}^{core}, \mathbf{f}_{Ar}^{div}$
30%	0.37 MW/m ²	0%	14.3 MW/m ²	3.4 MW/m ²	0, 0%
36%	0.45	0	13.0	3.1	0.18, 0
75%	0.90	0	5.0	1.2	0.35, 0
36%	0.45	43	5-6	1.3	0.18, 0.26

Summary

- Advanced mode improve attractiveness of fusion through higher power density and lower recirculating power. However improvements "saturate" after certain limits:
 - ✓ Neutron loading of ~ 3-4 MW/m² (higher β is then used to lower magnet cost)
 - ✓ Very little incentive for plasmas with Q > 40.
- For reverse-shear, system code calculations indicate a broad minimum for A ~ 2.5 to 4.5
 - ✓ Detailed engineering design has always driven us to higher aspect ratios (A ~ 4).
- Understanding trade-offs of physics/engineering constraints is critical in plasma optimization, *e.g.*,
 - ✓ Location of conductor/stabilizer (blanket constraints *vs* allowed κ)
 - \checkmark Core/divertor radiation *vs* in-vessel components constraints
- There is a big difference between a physics optimization and an integrated systems optimization