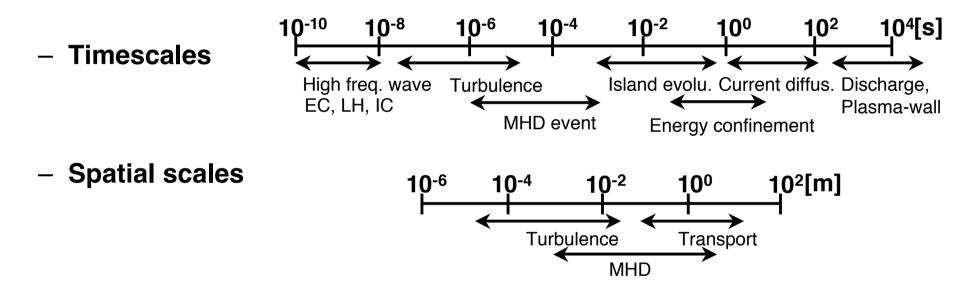
Integrated Simulation Code for Burning Plasma Analysis


T.Ozeki, N.Aiba, N.Hayashi, T.Takizuka, M.Sugihara², N.Oyama JAERI、ITER-IT²

IEA Large Tokamak Workshop on Burning Plasma Physics and Simulation, W60 Tarragona, Spain, 4 - 5 July 2005

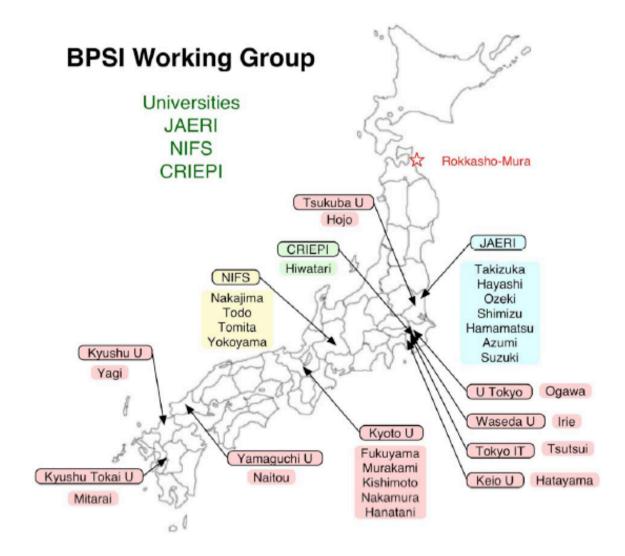
Background

Issues on simulation/evaluation of burning plasma

Burning plasma has very wide scales

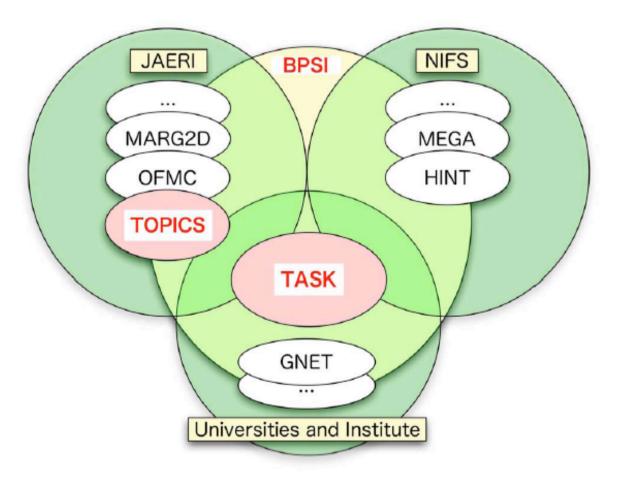
- Complex physics: How is the integrated property?
 - Turbulence, Transport, MHD, Wave-particle interaction, Plasmawall interaction, Atomic and molecular physics

Background


- Controllability of complex plasmas: How do we control the burning plasma and achieve the high performance?
 - High confinement, High beta, High bootstrap, High radiation, Suppression of impurity
 - Controllability of autonomous and burning plasmas
 - Strong coupling of pressure and current profiles: α-heating dominant, bootstrap current dominant

To solve these issues:

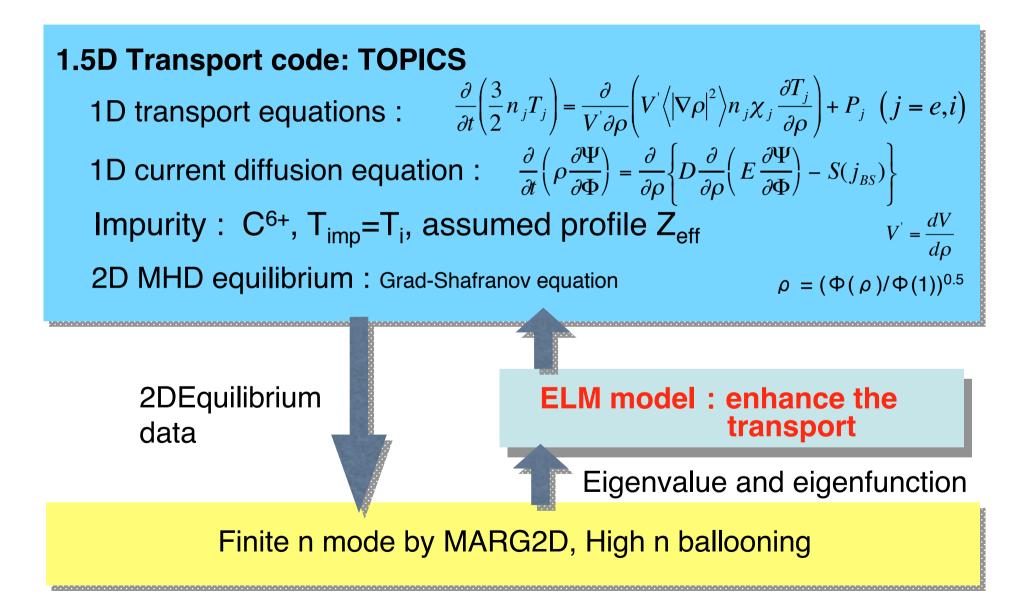
- It is not realistic to simulate the whole burning plasma based on the first principle at the present.
- Modeling and integration of the model are a useful method for the complex burning plasma. JAERI is planning to make the integrated code for the burning plasma analysis.


BPSI: Burning Plasma Simulation Initiative

Research Collaboration among Universities, NIFS and JAERI

Structure of BPSI

TASK: Core code of BPSI for ITER, JT-60, LHD, and small machines TOPICS: Transport Analysis and Predictive Simulation for JT-60


Burning Plasma Simulation Code Cluster in JAERI

Transport code TOPICSTokamak Preduction and Interpretation CodeTime dependent/Steary state analyses1D transport and 2D equilibrium MatrixInversion Method for NeoClassical Trans.		
Current Drive	ECCD/ECH (Ray tracing, Relativistic F-P), NBCD(1 or 2D F-P)	
Impurity Transport	1D transport for each impurities,Radiation: IMPACT	
Edge Pedestal	Perp. and para. transport in SOL and Divertor, Neutral particles, Impurity transport on SOL/Div. : SOLDOR, NEUT2D, IMPMC	
MHD	Tearing/NTM, High-n ballooning, Low-n: ERATO-J, Low and Midn MARG2D	
High Energy Behaviou	Transport by α -driven instability:@FMC	

MHD Stability and Modeling

MHD Behavior	Stability	Modeling
Sawtooth	Ideal/Resistive m/n=1/1 mode	Kadomtsev, Porcelli Model
Island Evolution	Tearing/NTM	Modified Rutherford Eq.
Beta Limits/ Disruption	low n kink high n ballooning	ERATO-J Ballooing Eq.
ELM	Medium n modes high n ballooning	MARG2D Ballooning Eq.
High energy particles induced instability	TAE/EAE/EPM Particles loss	Under consideration

Simulation model of ELM

Model of transport: Neoclassical in peripheral region (ρ >0.9) and anomalous in inside region (ρ <0.9)

Diffusivities in the transport eqs. :

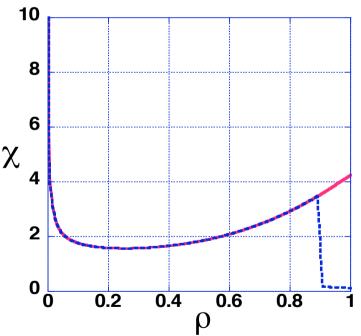
$$\chi_{i,e} = \chi_{neo,i} + \chi_{ano,i,e}$$

Neoclassical transport :

Diffusivity and bootstrap current : Matrix inversion method for Hirshman & Sigmar Formula (M.Kikuchi, et al., Nucl. Fusion 30(1990)343.) Neoclassical resistivity : Hirshman & Hawryluk 10

model (Nucl. Fusion 17(1977)611.)

Anomalous transport :


Empirical transport model

$$\chi_{ano} = \chi_0 (1 + 2\rho^3) (1 + \sqrt{P_{NB}})$$

$$\chi_{ano,i} = 2\chi_{ano,e}$$

 χ_0 : constant (=0.18[m²/s]) $P_{_{NB}}$:NBI power

Density profile

profile
$$n_e = n_0 \left[0.7 \left(1 - \rho^2 \right)^{0.5} + 0.3 \right] n_0 = 0.33 \times 10^{20} [m^{-3}]$$
 9

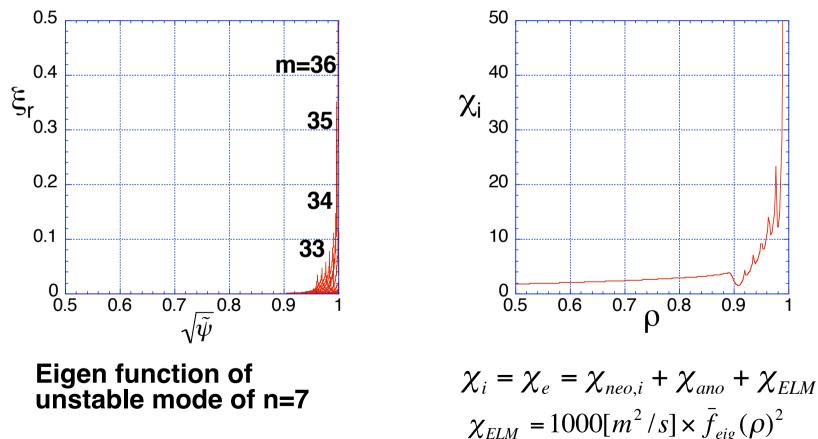
MARG2D: low-n and high-n mode stability code [S.Tokuda, Phys. Plasmas 6 (8) 1999]

MARG2D solves the 2D Newcomb equation

$$N\xi := -\frac{d}{dr} \left(L\frac{d\xi}{dr} \right) - \frac{d}{dr} (M^t \xi) + M\frac{d\xi}{dr} + K\xi = 0$$

associated with eigenvalue problem

$$N\xi = -\lambda R\xi$$

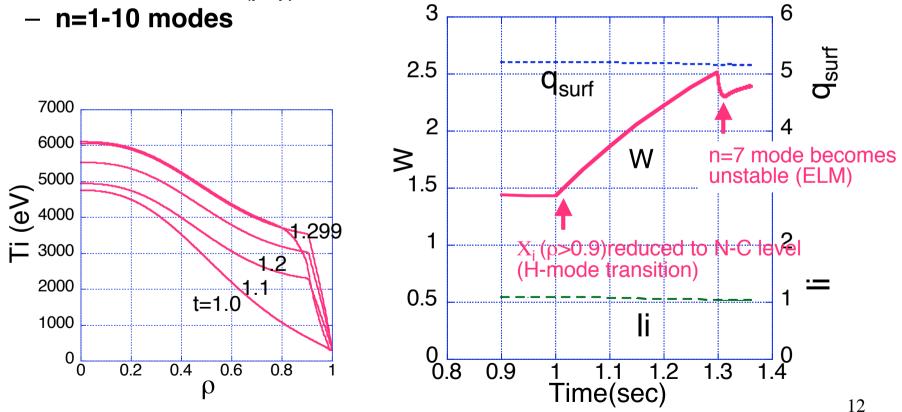

R: diagonal matrix with $R_{m,m} \propto (n/m-1/q)^2$

Properties of the code

- This method can avoid problems due to the continuum spectrum.
- Applicable for high n modes stabilities (more than n=50)
- Very short calculation time (~85sec for n=40, NR=2800, NV=280,m=90 by Origin 3800,128cpu)
- Results of the stability of n=1 agree with those of ERATO-J

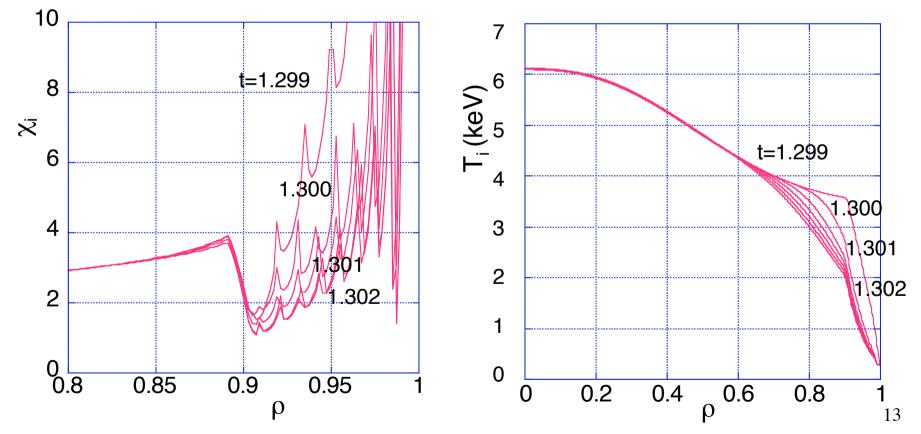
ELM Model

- The stability is examined in each iteration step of TOPICS.
 - When the plasma is unstable, the thermal diffusivity increases according to the eigen-function.
 - When the mode becomes stable, χ_{ELM} =0.



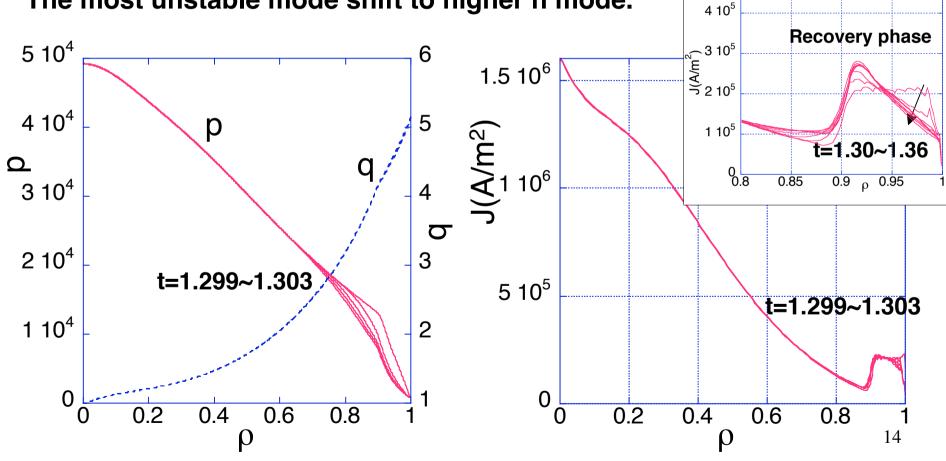
11

Results: Simulation of ELM


• Parameters

- R_{mai} =3.4m, a=0.9m, Ip=1.5MA, Bt=3.5T, κ ~1.5, δ ~0.2
- Ti_{edge} =300eV, ne_{edge} =1x10¹⁹1/m³, Z_{eff} =2.8-2.3
- β_N~0.5-0.8, P_{NB(perp)}=8MW,

Enhancement of χ_i and degradation of T_i


- n=7 mode becomes unstable at 1.299.
- The heat conductivity increases according to the eigen function.
- The pedestal of the ion temperature is degraded.
 - next, the relaxation of the shoulder appeared.

Reduction of p and small change of q

5 10⁵

- During the degradation (t=1.299-1.303), the current density profile does not change very much.
- The most unstable mode shift to higher n mode.

Stabilization of the mode and Recovery of Ti

- After the short period of the ELM crash,
 - the finite-n MHD mode becomes stable
 - the evolution of the pedestal restarts.

Computer system and calculation time

• Estimated cal. time is 58hour for 100msec simulation for 100μs iteration, using 64PE.

Summary

- Integrated simulation for ELMs is realized by the iterative calculation of MHD stability code MARG2D and the transport code TOPICS.
- Collapse event like ELM is produced.
 - Degradation and evolution of the pedestal structure are reproduced.
- Future work
 - Improvement of the model by the comparison with the experiment: profiles and time-dependent behavior of p and j, MHD and pedestal width etc.
 - Analysis of the mechanism of ELM events
 - Clarify the parameter dependency on ELM and give the guideline of control of ELM

Discussion

- "where are we, where do we want to go, how do we get there"
 - Integrated modeling is a quite realistic simulation; such as real shape, real time scale, and real device parameters.
 - Usually the modeling uses some assumptions, then integrated modeling is seems to be the integrated assumption. Keeping the physics is the key point.
 - The validation of the model is important; comparison with the experiments.
 - Each integrated modeling and simulation should be focused on the issues what we want to know, for example, ELM effects on the burning plasma,
 - It is important to select the physics issues, the control issues, scenarios...