Burn control study using burning plasma simulation experiments in JT-60U

H. Takenaga¹⁾, Y. Miura¹⁾, H. Kubo¹⁾, Y. Sakamoto¹⁾, H. Hiratsuka¹⁾, H. Ichige¹⁾, I. Yonekawa¹⁾, Y. Kawamata¹⁾, S. Tsuji-lio²⁾, R. Sakamoto³⁾, S. Kobayashi⁴⁾

 Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, 801-1 Mukouyama, Naka, Ibaraki 311-0193, Japan
 Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
 National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
 Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Workshop (W60) on "Burning Plasma Physics and Simulation" 4-5 July 2005, University Campus, Tarragona, Spain Under the Auspices of the IEA Large Tokamak Implementing Agreement

Introduction

Burning plasmas (DT plasmas)

- Strong linkage between plasma pressure and heating power through α particle heating.
- Burn control has to be performed under this linkage involving various physics.

This study provides new approach to the burn control study.

The linkage is experimentally simulated in non burning plasmas.

Plasma behavior and controllability under the linkage are discussed.

Outline

JT-60U

- Burning plasma simulation experiments
- 0-dimensional calculation
- Discussion and further improvement
- Summary

Scheme of burning plasma simulation

Limitations

JT-60U

In this burning plasma simulation, there are limitations at present.

- Different dominant reaction
 - **DD** : beam-thermal and thermal-thermal
 - **DT : thermal-thermal**
- Different temperature dependence between $\langle \sigma v \rangle_{DT}$ and $\langle \sigma v \rangle_{DD}$
- Complicate control for D and T in DT burning plasma
- \bullet Different heating profile and velocity distribution of α particle heating
- $\bullet \mbox{No}$ consideration of effects of instability triggered by α particles
- •No consideration of mass dependence of transport
- Stepwise change of P_{NB}^{α} (P_{NB}^{α} is changed stepwise against Sn, because P_{NB}^{α} is controlled by number of NB unit)

The loop of increases in P_{NB}^{α} and Sn is triggered with G=1.4 in ELMy H-mode plasma

- Constant P_{NB}^{Ex}=3.1 MW. (no burn control)
- P_{NB}^{α} : 2.4 MW (Q=3.8) -> 14 MW (Q=22) with a time scale of 0.2 s.
- Strong linkage between plasma pressure and heating power can be simulated.
- P_{NB}^{α} reaches to the upper limit of the available NB power.

The loop is triggered with G=0.6, although it is not triggered with G=0.35 in reversed shear plasma.

W and Sn are well controlled by P_{NB}^{Ex} in ELMy H-mode / L-mode plasma

- W is well controlled at a constant value after t=12.5 s by reducing P_{NB}^{Ex} against the increase in P_{NB}^{α} .
- Although the controllability is not lost at t=13.6 s with $P_{NB}^{Ex}=0$, the reduction of P_{NB}^{Ex} to zero indicates that the control margin is not so large in high Q region (Q~30).
- Burn control by external heating will be applied to reversed shear plasma.

0-dimensional model

Energy

$$\frac{\mathrm{dW}}{\mathrm{dt}} = -\frac{\mathrm{W}}{\tau_{\mathrm{E}}} + \mathrm{P}_{\mathrm{NB}} - \mathrm{P}_{\mathrm{rad}}$$

Fast ion (deuterium)

$$\frac{dN_{f}}{dt} = -\frac{N_{f}}{\tau_{f}} + S_{NB}$$

Bulk ion (deuterium) Center fueling

$$\frac{\mathrm{d}\mathrm{N}_{\mathrm{D}}^{\mathrm{C}}}{\mathrm{d}\mathrm{t}} = -\frac{\mathrm{N}_{\mathrm{D}}^{\mathrm{C}}}{\tau_{\mathrm{D}}^{\mathrm{C}}} + \frac{\mathrm{N}_{\mathrm{f}}}{\tau_{\mathrm{f}}}$$

Edge fueling

(including SOL and divertor)

$$\frac{dN_{D}^{E}}{dt} = -\frac{N_{D}^{E}}{\tau_{D}^{E}} + s_{R+GP}$$
mpurity

$$\frac{dN_{imp}}{dt} = -\frac{N_{imp}}{\tau_{imp}} + s_{imp}$$

Calculation conditions V=70 m³, Z=6 (carbon)

Confinement time

$$\begin{split} \tau_{E} &= \tau_{E0} P^{-0.69} n_{e}^{-0.41} \text{ (IPB98 (y,2) scaling)} \\ \tau_{f} : \text{slowing down time} \\ \tau_{D}{}^{C} &= \tau_{D0}{}^{C} P^{-1.1} n_{e}^{-0.66} & \text{(H. Takenaga et al. NF} \\ \tau_{D}{}^{E} &= \tau_{D0}{}^{E} P^{-1.1} n_{e}^{-0.36} & \text{(1999) 1917.)} \\ \tau_{imp} &= \tau_{imp0} P^{-1.1} n_{e}^{-0.36} \\ \tau_{E0} = 0.2 \text{ s}, \tau_{D0}{}^{C} = 0.5 \text{ s}, \tau_{D0}{}^{E} = 0.005 \text{ s}, \\ \tau_{imp0} = 0.005 \text{ s}, \end{split}$$

JT-60U

Neutron yield

thermal-thermal : Maxwell distribution at T Beam-beam : Maxwell distribution at 60keV beam-thermal : Maxwell distribution at

 $T_{eff} = (n_f T_f + n_D T) / (n_f + n_D)$ $T = W/e(3/2(n_D^C + n_D^E + n_f + n_{imp} + n_e))$

The loop triggered by increasing G well simulates the loop triggered by increasing τ_{E} .

• Constant P_{NB}^{Ex} at 5 MW (no burn control) and Q=5 before t=5 s.

JT-60U

- Sn and P_{NB}^{α} are increased due to increase in G or τ_{E} . P_{NB} reaches upper limit of 30 MW (Q=25).
- A time scale of increases in Sn and P_{NB}^{α} is smaller for larger increase in G or τ_{E} .

Red : G is increased at t=5 s Blue : τ_E is increased at t=5 s

Burn control is effective even with $G=1.2G_0$ at Q=5, but is lost with $G=1.12G_0$ at Q=30.

- P_{NB}^{Ex} is controlled at every 10 ms with W FB control (burn control).
- $G=1.2G_0$ at Q=5, P_{NB}^{Ex} : 5 MW (Q=5) to 3.95 MW (Q=8)
- $G=1.1G_0$ at Q=30, P_{NB}^{Ex} : 1.4 MW (Q=30) to 0.23 MW (Q=225)
- G=1.12G₀ at Q=30, Sn and P_{NB} gradually increase during t=5-6 s and quickly increase after t=6 s. P_{NB}^{Ex} decreases to zero.

Discussion and further improvement

JT-60U

For further improvement,

• Different dominant reaction

DD : beam-thermal and thermal-thermal, DT : thermal-thermal

- → H beam
- Different temperature dependence between $<\sigma v>_{DT}$ and $<\sigma v>_{DD}$

→ Correction using real time T_i measurement

- •Complicate control for D and T in DT burning plasma
 - Simulation using D and H

Planned scheme of burning plasma simulation

JT-60U

Summary

JT-60U

- Burning plasma simulation scheme is developed using 2 groups of NB, where one simulates α particle heating and other simulates external heating.
- The loop of increases in neutron yield rate and simulated α particle heating power is triggered by increasing the proportional gain without burn control in the ELMy H-mode and reversed shear plasmas.
- With burn control using the external heating, the neutron yield rate is kept constant in the ELMy H/L-mode plasma.
- Zero dimensional calculation shows that the loop triggered by increasing proportional gain well simulates the loop triggered by increasing confinement.

Acknowledgments : This work was partly supported by JSPS, Grant-in-Aid for Scientific Research (A) No. 16206093.