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Introduction

Reduction of heat load onto the

® Fusion output : 4GW
divertor plates

® External heating :
Enhancement of radiation loss by | 60MW

injecting seed impurity (f.,4~0.9)

High radiation loss around the
main plasma edge is required.

Radiation loss in the core plasma

=» High confinement is required to
maintain the high temperature.

2

Suppression of impurity accumulation
in the core plasma

Optimization of impurity injection

scenario is important. Example for A-SSTR2




High radiation fraction in JT-60U
e J T-60U ==
® Operation regime has been extended to high density
(ng/ngy 2 1) with high confinement (HH,,21) and high
radiation loss fraction (f ,,>0.9) in AT plasmas with ITB.
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Radiation profile in JT-60U
e ) T-60U ==
® Radiation profile is peaked in both RS and high g, H

® Radiation from Cu largely contributes in RS.
® Central radiation is ascribed to Ar in high §, H

® In RS, no confinement degradation is observed even
with high radiation loss in the main plasma.
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Impurity transport in JT-60U
—_—mm— T >

Z 1 dn 1 dT,
Neoclassical transport v, =

0 Zi(ni dr T, dr

(a) Reversed shear (b) High Bp ELMy H
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accumulation inside
the ITB

® Ar accumulation
inside the ITB

— weaker than the
neoclassical
Eonisiz prediction. .
=f. S ~
] (DAr 2'5XDAr )

— stronger in RS than
in high g, H
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Impurity injection scenario

Flat density profile (<=low central fuelling)
@Small impurity accumulation
A Operation with high edge density above Greenwald
density (ng,) may be necessary for high fusion output.

Peaked density profile (<=inward pinch)
@It is possible to achieve high fusion output with
relatively low edge density (<ngy).
Almpurity accumulation is one of the largest concerns.

Establishment of impurity injection secnario in a burning
plasma
=1t is necessary to clarify dependence of required
confinement and edge density on the impurity
accumulation level and density profile.



Calculation conditions

Impurity transport : IMPACT
A-SSTR2|
Fusion output : TOPICS

1,=12MA, B:=11T, R,=6.2m, a=1.5m,
2| | Fusion output ~4GW, P, main~400MW,
Aux. heating=60MW

Impurity : Ar
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Case with n,, profile more peaked by a
factor of 2 than n, profile

Ng, N. (1020 m™3), n,, (1 018 m3d) Ne, N. (1020 m™3), Ny, (1018 m3)
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Flat density
profile
W=850MJ
P,.4(r/a<0.9)
=218MW
HH=1.39

Peaked
density profile
W=767MJ
P,.4(r/@<0.9)
=342MW
HH=1.48
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Case with n,, profile determined by

Neoclassical transport
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Flat density
profile
W=830MJ
P..4(r/a<0.9)
=160MW
HH=1.33

Peaked
density profile
W=1025MJ
P..4(r/a<0.9)
=361 MW

HH=1.93



Dependence on electron density profile

=C =n, (0)/n, (ITB-foot)~n e(0)/n o(ITB-foot)
={ =n Alr(O)/n afITB-foot)~2xn e(0)/n e( ITB-foot)
== \==Neoclassical Ar transport

® Increase in core radiation
loss from accumulated
Ar by a factor of 2 can be

ZA compensated with
R e 1  slightly enhanced
r 1.6f ] confinement.
141 =0 =00 1 ® Higher confinement is

required with peaked
density profile in the
neoclassical case.

® Edge density can be
reduced below
Greenwald density by

05 1 15 2 25 3 35 : :
(0 (ITB-foot) density peaking.




Summary

® Required confinement and edge density are estimated
with 1-D transport code TOPICS/IMPACT for various
impurity accumulation levels and density profiles.

® In the case with Ar profile more accumulated by a factor
of 2 than electron density, increase in required
confinement is small even with peaked density profile.
At the same time, required edge density can be reduced
below Greenwald density.

® The analysis indicates that Ar accumulation by a factor
of 2, as observed in the high §, H-mode plasma, is

acceptable in a fusion reactor for impurity seeding.



