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Motivation

- Stellarators will need divertors for plasma exhaust.

- Solutions have to be compatible with stellarator con-
  figurations.

- Utilize flux diversion by magnetic islands at the edge
          ----> Island divertor

- W7-X: study of the reactor potential of this concept.

- W7-AS can be operated with similar edge structure,
     divertor studies provide preparatory information.

Major studies have been started in March 2001



Island divertor characteristics
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- 3D SOL

- toroidally discontinuous targets

- 2D deposition zones on targets

- long field line connection lengths
  (small pitch)

- short distance main plasma - target

- flux compression

- penetration of recycling neutrals

- baffling

Critical:   - cross field transport



Divertor geometry in 7-AS: boundary islands

R = 2 m, a ≤ 0.16 m, B ≤ 2.5 T, non-planar coils, five field periods

one of five magnetic field periods

- can be operated with large magnetic islands at the edge

- rad. position can be varied by adjusting the rot. transform

- rad. width can be varied by special control coils



Divertor geometry in W7-AS
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Divertor geometry in W7-AS: topological parameters

Field line connection lengths Lc
decrease with increasing distance
from main plasma.

Lc and distance ∆x between
x-points and targets can be 
independently varied. 



Divertor geometry in W7-AS: W7-AS versus W7-X

W7-X

W7-AS



Major aims of the programme

To answer the questions:

- Effects of the new divertors on the plasma performance? 

- Cold divertor plasmas without too strong cooling of the
  core ?

- Controlled? Compatible with active particle pumping?

- Compatible with improved confinement scenarios
  (e.g. ELMy H-mode)?

Data shall be used to validate the EMC3-EIRENE code.



Previous operation with inboard limiters

High power NBI:

- maximum ne ≈ 2.5 1020 m-3 (depending on power)

- no density control,

- impurity accumulation, τimp ∝  ne(0)/P 0.8,

  --> transient discharges,

- extremely low edge densities, nes/ne ≈ 0.1,

- high edge density sufficient for divertor operation

  only transiently achieved (strong gas puff).



Summary of main results

Access to a new regime with NBI at very high density 
(up to ne ≈ 4 x 1020 m-3) with improved confinement:

- τE steeply increases with density, 

- τp and τimp decrease with increasing density
  (τimp ≈ τE at highest density)

Density control already without Ti-gettering,

quasi-steady state operation also including partial 
detachment,

radiatiation always peaked at the edge.

Plasma heating by HF (EBW 140 GHz) successfully
demonstrated.

Record value of <ß> = 3.1% achieved (at B = 0.9 T)



Plasma performance at high density: access to stationarity
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- stored energy ≈ 20 kJ

- Te(0) ≈ 500 eV, ν* ≈ 0.3

- edge density ≈ 5 1019 m-3

- edge temperature ≈100 eV 

- radiation edge-dominated



Plasma performance at high density: trans. to stationarity
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Plasma performance at high density: improved confinement

- steep drop of τimp

- IC: steep increase 
  (´jump´) of τE, 

- low to moderate τE 
  degradation at 
  partial detachment
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Plasma performance at high density: improved confinement
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Plasma performance at high density: plasma radiation

- up to 90% at detachment
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Plasma performance at high density: plasma radiation

Normal
confinement

Improved
confinement

SPRED overview spectrometer:



- Te profiles unchanged,
- ne profiles broadened.

Plasma performance at high density: core parameters 
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First SITAR code analysis
of Al emission:

- nearly unchanged particle diffusivity,

- reduction of vin by a factor of 4 - 5.



Plasma performance at high density: H-mode?
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Plasma performance at high density: H-mode?
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Summary of    - H-mode signatures during transition regimes,
H-mode: - moderate Er and poloidal spin-up,

- no accumulation problem in quiescent (IC) regime

BIV spectroscopy:

Plasma performance at high density: H-mode?

- radial E-field and spin-up develop,
- but less then in conventional H-mode. 

R



Plasma performance at high density: edge parameters

- edge density nes increases 
  steeply
- drops at detachment

NC ---> IC---> detachment: - edge temperatures Tes, Tis drop
  already prior to detachment,

- Tis >> Tes (different locations)
  ---> inhomogeneous Tes?



Divertor regimes

Region D

Region A

Probe arrays

Watershed

The plasma-target interaction 
concentrates mainly at helical stripes 

Hα traces

Region D:
rollover and detachment
of energy and particle flux
at high density

Region A:
attached spots even at
highest density



Divertor regimes: downstream parameters
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Divertor regimes: downstream parameters

 Region D:

-rollover up to detachment
 of ned, Γpd

 (confirmed by 2D Hα data)

- Ted > 2 eV at detachment
  (from Hα/Hγ)

Peak densities and temperatures
from probe array

Region D

Region A

Probe arrays
Watershed



Divertor regimes: stable partial detachment

Example for stable partial detachment

- ne = 3 1020 m-3

- Te(0) = 400 eV, 

- Tes = 20 eV (?)

- radiated power fraction up 
  to 80%
- radiation peaked at the 
  separatrix position

- outer peak in region A
  attached,
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Divertor regimes: controlled transition to part. detachment 

Transition to ‚stronger‘ part. detachment - radiated power fraction
  ≈ 85%,

- edge radiation dominated,

- peak of C II radiation shifts
  in  controlled way towards
  the x-points.

- Tes ≈ 15 eV, nes drops,

•

•
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Divertor regimes: reduction of thermal load

watershed

Thermal load patterns on target, discharge #51321
(3D calculation from thermography)

t = 0.35 s, attached t = 0.65 s,partially detached

atershed

Region D
detached

Region A
attached



Divertor regimes: neutral pressures
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- steep increase of po in
  divertor subvolume during
  part. detachment,

- sufficient for pumping

- strong up/down asymmetry

- asymmetry inverts at low
  density,

- main chamber po≈ 10-4 mbar



Divertor regimes: modelling of basic tendencies (Feng, Sardei)

EMC3-EIRENE input parameters:
     PSOL    adjusted
     nes       adjusted
     χ = 3D = 0.5 m2/s
     carbon sputtering coef. = 3%0
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Operational ranges and density limit

Variation of apl and ∆x by 
control coil currents 

radiative collapse
part. detachment

normal confinement
unstationary
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- Access to IC independent
  of ∆x,

- partial detachment at 
  ∆x ≥ 2.4 cm 

- partial detachment extends
  accessible density range 

NBI, 2 MW: 

density limit SUDO et al.

    nS = 0.25 (PB/Ra2)1/2



Operational ranges and density limit 

toroidally averaged surfaces
and fit by κ and δ
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Summary 

- Access to a new NBI, high-density regime (up to ne ≈ 4x1020 m-3)
  with high τE and low τp and τ imp

- Full density control already without Ti-gettering,

- Quasi-steady state operation also including partial detachment,

 

- Edge-dominated radiation, radiated power fractions are low to 
  moderate in attached and high (up to 90%) in detached regimes 

- Detachment is partial: it does not extend over the full target area, 
  and the particle and energy fluxes stay finite (Ted > 2 eV) 

- Improved confinement in all separatrix-bounded configurations,

- Stable part. detachment restricts to configurations with larger 
  distance between x-points and targets (divertor configurations).

- The new regime is characterized by flat density profiles with steep
  gradients at the edge,


