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Excellent Technical Progress Has Enabled TFTR
and JET to Begin Studying Burning Plasmas
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JET and TFTR were Designed to Perform
Deuterium-Tritium Experiments

Tokamak Fusion Test Reactor
(TFTR)

Joint European Torus
(JET)

Ip(MA) 4.0 2.7
BT(T) 3.6 5.6
PDT(MW) 16.1 10.6
PDT/Pin=QDT 0.64 0.27

Fusion Energy (GJ) 0.68 1.70
Tritium Proc. (g) 99.3 99.



How are D-T Experiments
Different from D?

• Isotope Effects
– Transport
– Wave-particle Interactions

• Alpha-particle Physics

• Technology



Isotope Effect Studied in a Wide
Variety of Operating Regimes

• Challenge to theoretical interpretation and to
gyro-Bohm scaling, <A> -0.2

• Recent ITER scaling <A> 0.19
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JET D-T Elmy H-mode Experiments
Consistent with ITER Scaling

• What is the role of
the pedestal and
the core?

JET
0.8 NBI ICRH

0.7

0.6

H
D
D–T
T

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2

τITERH–EPS97(y) (s)

τ th
 (

s)

0.3 0.4 0.5 0.6 0.7 0.8

JG
98

.3
05

/2
a

•   ττττth ∝∝∝∝     <A>0.16±0.06

w

r/a 1

Pedestal

Core T
ra

ns
po

rt
 b

ar
rie

r

JG
98

.3
25

/4
c

Cordey



Stored Energy Associated with
Pedestal Increases with <A>

• Wped ∝∝∝∝  <A>0.96

• Power loss by ELMs decreases

Bhatnagar
Cordey



In JET H-mode Discharges Thermal
Conductivity Degrades in the Core

• Confinement scaling in the core consistent with
gyro-Bohm.
–  ττττthcore ∝∝∝∝ <A> -0.16±0.1

    χχχχI ∝∝∝∝  <A>0.73±0.4

Cordey



Power Threshold Going from L to H-mode
Shows Favorable Isotope Scaling

• Ploss  ∝∝∝∝     <A>-1

JET

• ELM frequency
decreases with <A>
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Improvement of χχχχI in Core of
TFTR Supershots in DT

•  ni(0)ττττETi(0) increased by
~55% from D to DT
– Some cases up to 80%

increase
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ITG Model with Radial Electric Field
Reproduces the Ion Temperature

• Maximum linear growth rate
decreases with ion mass.

• Er shearing rate increases with Ti.

• Radial Electric Field Shear
Reproduces Strong Isotope Effect.

• ==> Isotope Effect depends on 
Operating Regime
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Favorable Isotope Scaling Not Observed in
Reverse Shear Experiments

• Power threshold for internal barrier
formation increased with <A>.
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Summary of Isotope Effects on
Confinement

• H-mode isotope scaling studies on JET, together
with the worldwide physics database, provide a
good technical basis for baseline operation of
burning plasma experiments.
– Isotope scaling for ττττE and power threshold.

• Understanding of isotope scaling is incomplete.
– Variation in different operating regimes.
– What is the role of radial electric field shear?
– What are the implications for advanced

operating modes?



ICRF Successfully Heated DT Supershot
Plasmas in TFTR

• Power deposition calculations in good
agreement with experiment.

∆∆∆∆ Ti due to 2nd harmonic
tritium heating

∆∆∆∆ Te due to direct electron
and  3He minority ion heating
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JET Demonstrated Successful Deuterium
Minority Heating of Tritium Plasmas

• Record Q DT for steady-
state operation.
– deuterium energy

optimized
– Not optimal for high Q DT

• Strong ion heating
observed with 3He
– Absorption weaker with

2ΩΩΩΩΤΤΤΤ

– Recommended scenario
for ITER

• Studied tritium
minority heating.Eriksson, Start

• Physics of ICRF heating well established.
- Technology challenges remain.



Alpha-particle Physics Studies

• MHD Quiescent
– Alpha-particle heating

• MHD Affects Alpha Confinement

• Alpha Particle Induced MHD Activity

• Diagnostic Development Critical for these Studies



Alpha-Particle Parameters in TFTR/JET
Sufficient to Begin Study of

Alpha-Particle Physics

Budny

TFTR JET ITER
Pfusion (MW) 10.6 16.1 400
pαααα((((0) (MW/m3) 0.28 0.08 0.43
ββββαααα((((0000))))% 0.30 0.4 0.8
–R••••grad( ββββαααα))))% 2.0 2.3 4.0
Vαααα(0)/VAlfvén (0) 1.72 2.52 1.76
Pαααα/Pheat 0.03 0.09 0.66



D-T Neutron Emission is Consistent with
Calculations Based on Plasma Parameters
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• Alpha birth rate and profile are adequately
modeled.
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Escaping Alpha Flux at 90 o Detector is
Consistent with Classical First Orbit Losses

• At 2.5 MA in TFTR , first orbit loss ≈≈≈≈ 3% globally
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Confined Alphas in the Plasma Core
Show Classical Slowing Down Spectrum

• TRANSP calculation includes:
– orbit trajectories
– classical slowing down
– time dependence of alpha production

TFTR
Double Charge Exchange 
Technique

He++ + Li+  ⇒   He0 + Li3+

Vpellet

He++

He0

Li

Cloud

Alpha Particles

106

105

104

103

543210

dn
/d

E
 (

a.
u.

)

TRANSP/FPPT

n
n

n
n

n

n n
n

normalization

Alpha energy (MeV)

r ≈ 0

Fisher, Petrov, Medley



Stochastic Ripple Diffusion Affects
Confinement of Deeply Trapped Particles

• FPPT includes modeling of stochastic ripple
diffusion.

• Heat deposition due to ripple loss of fast ions
imaged on JT60U.
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Alpha Particles Are Well Confined

• 0 ≤≤≤≤Dαααα≤≤≤≤ 0.03 m2/s
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Rapid Ash Transport from the
Core to the Edge in Supershots

• Confinement of ash consistent with impurity
transport and edge conditions.

DHe / χD ~ 1
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Sawteeth Cause a Large Radial
Redistribution of Alpha Particles

• Alpha heating profile in a burning plasma
will depend upon sawtooth activity,
although only transiently
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MHD Activity can Cause Enhanced Loss
of Alpha Particles

Mode locks

Zweben, Darrow

•  Strong toroidal anisotropy
    in loss apparent as NTM

mode is rotating

• Enhanced loss observed
due to:
-disruptions
-kinetic ballooning modes

•  Concern for plasma-facing
   components.

TFTR



Observation of TAE Instability
Driven by Fusion Alphas
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TAE Modes Redistribute Deeply
Trapped Alpha-Particles

• Further work required to benchmark models.
• NNBI experiments on JT60U have observed

strong radial redistribution.
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Sawtooth Frequency Decreases with
Isotopic Mass

• Change in sawtooth period  attributed to increase in slowing
down time and beam ion perpendicular energy density.

• Calculations imply that alpha particles had a stabilizing
effect in highest performance D-T discharges.

JET

Nave



Initial Evidence of Alpha-Particle Heating
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Alpha Heating Observed in JET

• Alpha heating observed on both TFTR and JET.
• Comprehensive study of alpha heating requires

higher values of P alpha /Pheat  .

• Palpha /Pheat ~12%
- 30-40% through the 

electron channel
• Larger range in T

concentration
- analyze the effects 

associated with isotopes
• Sawteeth variability

- limited number of pulses

JET

Thomas



Can Alpha Particles Be Harnessed to
Further Improve Reactor Potential?

• Theoretical work on alpha channeling, frequency sweeping
of waves, and stochastic ion heating raise the prospects of:
– Increased ion heating
– Alpha ash control
– Modify alpha heating profile
– Reduce alpha pressure to decrease instability drive
– Current drive

• Need for experimental study
– Fundamental wave-particle physics studies begun on TFTR.
– D. Gates et al. predicted the role of stochastic ion heating in

NSTX discharges when V NBI >> VAlfven

– P. Thomas at EPS suggested possibility of increased ion
heating due to alpha particles.

• Limited data



Summary Alpha-Particle Physics

• Alpha-particle confinement, transport, and
slowing down well understood in MHD quiescent
discharges.
– Not as extensively studied in reversed shear

experiments.

• Alpha-particle confinement affected by MHD.
• Alpha particle driven instabilities studied

– Nonlinear consequences remain to be studied.

• Alpha-particle heating observed.
– Higher power alpha particle heating experiments are

required.



Tritium Processing Safely
Performed

• On-site tritium
processing successful.

• Tritium retention in
graphite is a serious
concern.
– TFTR tiles 16% retention
– JET 12% retention
– One year after extensive

removal efforts

• Need for in-situ removal
– Alternative materials

PPPL-JAERI Collaboration
Gentile,Skinner (PPPL)

Shu (JAERI)



In-vessel Remote Handling
Demonstrated on JET

• Critical technology
for future burning
plasma experiments
– Fluence ~ 10 4 greater

JET

Telescopic Articulated Manipulator



Successful Demonstration of
Decommissioning of a Fusion Facility

• Machine activation in future burning plasma
experiments will require remote disassembly.

TFTR



Summary

• Results from TFTR and JET:
– Provided solid design basis for a burning

plasma experiment.
– Identified opportunities to learn new science

and technology.

• Critical aspects of the technology for a
burning plasma experiment were utilized
– Burning plasma experiment will be far more

demanding due to the higher fluence, tritium
retention and processing requirements.

• Full potential and consequences of alpha heating
have not been explored!


