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1. Required divertor performance

(i) Heat removal
(ii) Fuel density control
(iii) Exhaust of helium ash and other impurities
(iv) Providing proper magnetic configuration for enhanced

confinement (H-mode)

Requirements
1. Peak power load on the target
    plates ( qpk )

q MW mpk ≤ 10 2 /

2. Helium concentration in the
    core plasma ( CHe )

CHe ≤ 0 06.

3. Zeff  in the core plasma Zeff ≤ 1 6.

4. Upstream plasma density ( ns) n ns e≤ / 3
5. D-T particle throughput
   (ΓDT )*

ΓDT Pa m s≤ ⋅200 3 /

6. Core fuelling (ΓDT
core )* 0 100 3 1≤ ≤ ⋅ −ΓDT

core Pa m s 

•  6 requirements must be simultaneously satisfied
* are also control actuators

Specific features for divertor control

(i) Control actuators; not so many
- Divertor geometry
- Gas-puffing (Throughput ; ΓDT ) *
- Core fuelling (ΓDT

core )*
- Pumping speed
- Impurity seeding (Ne, Ar)



(ii) Divertor and Core Performance are closely linked ;
SOL/Divertor ⇔ Pedestal ⇔ Core
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- Development of Modelling to include Pedestal continues,
   but not yet complete.
- Presently CEI (5cm inside separatrix) is calculation
   boundary and transport barrier is not yet properly
   modelled.



2. Predicted divertor performance

Prediction by B2/Eirene divertor code

Basic models
- D m s= 0 3 2.  / , χ = 1 2 /m s

w/o parameter and spatial dependence
- ELM effect is not included (time averaged)
- Carbon sputtering (physical + chemical), but they are
   absorbed at every surface encounterd
- Partial detachment (only near separatrix is detached)

Optimization of divertor geometry
Key strategy to reduce peak power load:

Enhance neutral accumulation, in particular, near
the separatrix region for outer target plate

•  Vertical Target Plate + Divertor Dome
•  V-shape Target geometry ; effective in accumulating

neutrals near separatrix
(JET)

⇒ ≈  30% reduction of qpk in ITER
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•  Gas flow between inner and outer divertor;
⇒ increase neutral recirculation in the outer

divertor target region (higher power flux)
⇒ reduce peak heat load (JET, JT-60U)

Γ
in

Γ
out

Γ
pump

- ≈ 20% reduction of qpk by gas flow between inner and
  outer divertor

Separatrix density
Dominant effect on divertor performance and can be
controlled by gas puffing (throughput; ΓDT ) to some extent

Γ Γ ΓDT DT
gas

DT
core= +

•  Saturation corresponds to
  detach. of inner divertor
  (increased neutral density)

•  Higher ns  for higher
   power to detach



Inductive operation
•  Peak power load and helium concentration
X

                                                     

Reference operation
PSOL=86MW(Pf=410MW, Ptotal=123MW, Q=10, frad=0.3)

High fusion power with high Q
PSOL=100MW (Pf=600MW, Ptotal=145MW, Q=24, frad=0.4)

High fusion power with low Q
PSOL=130MW (Pf=600MW, Ptotal=187MW, Q=9,   frad=0.3)

•  Peak power load and helium concentration for reference
  operation mode is well within the requirement.

•  Fusion power (helium source) and throughput dominate
   helium concentration, while pumping speed is less
   important

•  Reasonably wide operation window is available for the
   reference inductive operation mode, while density window
   is not so wide (∆ns between qmax and complete detachment)



Steady state operation

Steady state
PSOL=100MW
Pf=340MW, Q=5.7,
Ptotal=128MW, frad=0.2
Longer connection length
with q95=4.5
=> same qpk with
     lower ns

cf.
Inductive operation
PSOL=100MW
q95=3.0

                                               (Kukushkin)

•  ns(at qpk=10MW/m2)=0.26 
=> somewhat higher than n ns e≈ ≈/ .3 0 23

=> Impurity seeding will be needed

•  Initial calculations with neon seeding (0.4%) ;
⇒  ≈ 30% reduction of qpk (radiation region is getting
     far from target plate compared with carbon)
     qpk=10MW/m2  at ns ≈ −0 23 0 24. .

    ∆Zeff ≈ 0.4 (total Zeff ≈ 1.6)



3. Further model development needed
   and remaining uncertainty

(1) Transport in SOL region

(2) Separatrix density under good H-mode confinement

(3) Consistent pedestal model is not yet developed;
- D m s= 0 3 2.  / , χ = 1 2 /m s  are too large in the pedestal
  (transport barrier) region
=> low pedestal density (n mped ≈ − × −( . . )3 5 4 5 1019 3)
=> e.g., neoclassical level D m s≈ 0 06 2.  /  and proper width

model for pedestal must be implemented
=> Consistent boundary condition for core plasma

transport (to be developed)

=> By proper pedestal model, core fuelling requirements
can be properly specified, which is consistent with
the expected density pedestal in ITER

Core fuelling is needed
because;

•  Gas-puffing is very
inefficient due to thick
SOL in ITER

•  Only small fraction
of gas-puffed neutrals
can penetrate across
separatrix



Specification of required core fuelling for expected density
pedestal in ITER

Particle balance across
separatrix and pedestal

•  Core fuelling Γcore
C  ;

   Fuelling inside
   pedestal

•  Pedestal fuelling Γcore
P  ;

  Fuelling between
  separatrix-pedestal
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(  ):Pedestal fuelling

•  High field side pellet is prepared for ITER
   ⇒ required core fuelling is possible

50-100 Pa m s⋅ 3 /
500 m/s (deposition depth ≈ 0 15. a; inside pedestal)



4. ELM effects and mitigation

High pedestal pressure required for good
confinement can result in large divertor erosion
due to Type-I ELMs

•  Limit for divertor erosion due to ELMs
∆W SELM ELM ELM/( )τ ; surface temperature rise

      (Federici; SOFE, 2002)

•  Specification for τ µELM s≈ 200  

•  τELM  in JET for various
     density and triangularity

             τ µELM s≈ 200

                              (JET, Becoulet)



•  Specification for S SELM ss≈ ×2

λq  ; Power deposition width mapped on midplane has large
  uncertainty

•  Experimental data
    for Sss  are mostly

taken from attached
condition

    => λq  ≈ 5mm
    => S mELM ≈ 6 2 

•  From power load
profile in ITER ;

   λq  =(10-13) mm
   due to detachment
   =>  S mELM ≈ 15 2 
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•  Criteria of ∆W WELM ped/  for  surface temperature
rise up to critical one

τ µELM s= 200  
S mELM ≈ −6 15 2 

CFC W
Allowable ∆W WELM ped/   (%) for 106

ELM events with deposition area
S S mELM SS≈ × ≈ −2 6 15 2  

W MJped ≈ 100  

3.4- 8.3 4.4- 11

* This is also necessary to maintain plasma purity
   (≈1022 carbon/ELM event is produced)



Proposed models for experimental data summary

Collisionality ( ν*
)

                (Loarte, IAEA 2000)

( ) ( ) *  *∆W
W

ELM

ped

Pν ν∝

                   P ≈ -0.33

  (15-20) % for ITER
0

0.05

0.1

0.15

0.2

0.25

0.01 0.1 1 1 0

DIII-D
JET
ASDEX-U

∆ W
E

LM
 
/ 

W
p

e
d

ν* (collisionality)

ν *
I T E R

Parallel transport ( τ // )
                 (Janeschitz, PSI 2000)

( ) ( )  //

//

∆ ∆W
W

W
W

ELM

ped

tau ELM

ped
ELM

=
+

0

1

1 τ
τ

              τ ν//
*( / )= +2 1 3 2L

Cs

              τ µELM s≈ 200  

   (12-15) % for ITER
0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

DIII-D
JET
ASDEX-U

τ
 //

 (µs )

∆ W
E

LM
 
/ 

W
p

e
d

τ
/ /

I T E R

Sheath model
                        (Shimada, 2001)

∆ Γ

∆ ∆

W k T

B B R t

ELM ped

p T om om om

=

×

γ

π            ( / ) 4

Upper limit
(≈ 5) % for ITER

0

0.1

0.2

0.3

0 500 1000 1500

DIII-D_exp
DIII-D_model
JET_exp
JET_model
AUG_exp
AUG_model

T
p e d

 (eV)

∆ W
E

L
M /

 W
p

e
d

∆om=a/100

∆t=0.2ms 

All models still need much more work for
ITER extrapolation



ITER Prediction
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•  Very severe predictions based on ν*

 and τ //  models.
•  Range of uncertainty and difference between models are
   significantly large.



Possible mitigation methods

(1) Further inclination of divertor plate

•  Poloidal projected angle 22.8° (2.1° real) ⇒ 11.4°

•  Possible disadvantage can be acceptable

- Particle recycling on the upper part of divertor plate ;
⇒ not significantly increased (B2/Eirene)

- Separatrix line position control;
⇒ may be acceptable once operation mode is fixed for

engineering testing (life time becomes a more
important issue for this phase).

⇒ use of W divertor plate may also be possible during
this phase due to low disruption probability.



(2) Discharge regime of high pedestal pressure with
small ELMs (Type II)

•  Most of the present machines show that
•  high  q95  ( ≥ 3.5-4)
•  high δX (≥ 0.4-0.5)

are needed to obtain this alternative ELM regime.

•  δX  for ITER (=0.5) satisfies the required condition.

•  Q=10 and Pfusion ≈250MW operation with  q95=3.5 (Ip=13MA)
is possible, though window is narrow.

Further increase of HH-factor
- with lower density (many machines)
- with higher q95  (HH=1.3 with q95=3.6, n nG/ ≈ 1 and

   very small ELMs in AUG)
window becomes much wider.

•  This small ELM regime will be accessible for Hybrid and
steady-state scenario ( q95>3.5).

•  Further R&D is needed to extend this small ELM regime to
the reference high Q inductive operation mode.

- Type II ELMs in-between Type I ( q95=3, δX =0.5; JET)
    could be a clue for R&D



5. Summary

•  Divertor requirements for ITER are summarised.

•  B2/Eirene code calculations show that these requirements
will be satisfied for inductive operation mode.

•  For non-inductive operation mode, impurity seeding
will reduce the peak heat load to meet the requirement.

•  Further model development is necessary for B2/Eirene
to include proper pedestal model.  It is indicated that
gas-puffing cannot fuel across the separatrix to form
proper density pedestal.  High field side pellet fuelling
is prepared in ITER to fuel inside the pedestal.

•  Effect of Type-I ELMs on divertor plate could be severe
for high pedestal pressure required for good confinement,
while present prediction by proposed models are still
primitive, and thus further development/improvement of
the models as well as the database are necessary.

•  Possible mitigation methods for Type-I ELM effect are
summarised; inclination of target plate and Type-II ELMs.
Hybrid and steady-state scenarios can be operated with
Type-II ELM regime.  Further exploration to extend this
regime to high Q inductive operation mode should be
promoted.


