

Status and Plans for C-Mod Lower Hybrid and Advanced Tokamak Program

ITPA topical group meeting on Steady State Operation and Energetic Particles St Petersburg, 14-16 July 2003

Presented by Dale Meade, PPPL, on behalf of A. Hubbard MIT Plasma Science and Fusion Center, and the C-Mod Advanced Tokamak Task Force

Unique Features of C-Mod for AT research

- In physics terms, "Steady-state" current drive implies pulse lengths
 > current relaxation time τ_{CR}.
 C-Mod can run 5 second pulses, longer normalized time than other divertor tokamaks.
- Other reactor-relevant features, particularly important for internal transport barriers, are
 - Strongly coupled ions and electrons.
 - $\tau^{e-i} \ll \tau_E (T_e \sim T_i),$
 - No core fuelling or momentum drive.
 - All RF heating and CD.

Alcator

C-Mod

Assumed: Z_{eff} =2, T_e=6 keV (ITER 19 keV).

Note: C-Mod has already run 3 sec pulses. Some pulse lengths are upgrades.

Current Profile Control: Lower Hybrid Current Drive system

	2003	2005
Frequency	4.6 GHz	4.6 GHz
Source Power	3 MW	4 MW
Antenna	1 grille (4x24 guides)	2 grilles (4x24 guides each)

- Designed for well controlled spectrum.
- Each antenna will have **flexible N**_{//}, variable over range 2-4.
- Variable between or during discharges using phase shifters.
- 2 launchers can have different spectra.
- Allows us to tailor spectrum for desired wave accessibility (depending on n(r), B), and to control deposition and current drive profiles, including CD far off axis.

LH System nearly complete

- RF sources, power supplies, WG prepared by MIT.
- 12 Klystrons (3 MW) installed, tested in the C-Mod cell.

- LH Coupler and splitter fabricated by PPPL.
- Will be commissioned late 2003, following high power testing.

Example of an AT target scenario

- One of many optimized scenarios modelled with ACCOME.
 - I_p=860 kA, non-inductive.
 - I_{LH}=240 kA
 - I_{BS}=600 kA (70%)
 - β_N=2.9

 $I_D = 0.86 \text{ MA}$ $I_{Ih} = 0.24 \text{ MA}$ $f_{bs} = 0.7$ 8 J_tot J_seed 6 J_bs J_lh J (MA / m²) 4 2 0 -2 0.2 0.0 0.4 0.6 0.8 1.0 r/a

Double transport barrier

- B_T=4 T
- ICRH: 5 MW
- LHCD: 3 MW, N_{//0}=3
- n_e(0)= 1.8e²⁰ m⁻³
- T_e(0)=6.5 keV (H=2.5)
- Scenarios without barrier, or only an ITB, have similar performance.

Summary

- Advanced Tokamak research will be an increasingly important part of the C-Mod program.
- Focuses on **RF control of current, transport and pressure** profiles in high density regime, for t >> τ_{CR} , $B_T = 4-8 T$, $T_i \sim T_e$, $n_e \sim 1-5 \times 10^{20} m^{-3}$.
- Initial LHCD system is nearly complete 1st current drive and profile control experiments in 2004.
- AT research program also includes:
 - Internal Transport Barrier experiments (in progress).
 - Density control upgrades, including new cryopump.
 - Tests of mode conversion current and flow drive.
 - Divertor power handling at ITER-like fluxes.
 - Exploring and optimizing no-wall MHD stability limits.