Study of q = 1 Triple Tearing Modes

Andreas Bierwage¹, Satoshi Hamaguchi², Masahiro Wakatani^{1†}, Sadruddin Benkadda³ and Xavier Leoncini³

 Kyoto University, Dept. Fundamental Energy Science, Japan
 Osaka University, Graduate School of Engineering, Science and Technology Center for Atoms, Molecules, and Ions Control (STAMIC), Japan
 PIIM-CNRS, Université de Provence, Équipe Dynamique des Systèmes Complexes, France

Study of q = 1 Triple Tearing Modes – p.1

Sawtooth oscillations

Study of q = 1 Triple Tearing Modes – p.2

Sawtooth oscillations

Study of q = 1 Triple Tearing Modes – p.2

Partial collapse

■ Multiple *q* = 1 resonant surfaces may form

Study of q = 1 Triple Tearing Modes – p.2

Motivations

Sawtooth oscillations

- (-) degrade confinement
- (+) impurity/ash removal
- Possibility of partial sawtooth collapse
 - no mixing of central core region
- Partial collapses may be preferable to full sawtooth crashes

 \Rightarrow detailed understanding of the partial collapse dynamics may open interesting possibilities for the control of tokamak discharges

Motivations (2)

• Multiple q = 1 resonant surfaces

- may appear after preceeding partial crashes
- Simplest case with $q_0 < 1$: <u>Three</u> q = 1 resonant surfaces
 - give rise to triple tearing modes (TTMs)

 \Rightarrow study of linear instability characteristics and nonlinear evolution of TTMs

Outline

- 1. Model: Reduced MHD
- 2. Linear instability characteristics *broad spectrum of unstable modes*
- 3. *m* = 1 mode in the early nonlinear regime *"fast trigger" mechanism*
- 4. Random perturbation
 - partial collapse without precursor

- 5. Overview: TTMs responding to various kinds of perturbations
- 6. Partial reconnection:rebound, or "dynamic saturation"
- 7. Summary
- 8. Conclusion and perspectives

1. Model: Reduced MHD

$$\partial_t \psi = [\psi, \phi] - \partial_\zeta \phi - \frac{1}{S_{\text{Hp}}} (\hat{\eta}j - E_0)$$
$$\partial_t u = [u, \phi] + [j, \psi] + \partial_\zeta j + \nu \nabla_\perp^2 u$$

with $j = -\nabla_{\perp}^2 \psi$ and $u = \nabla_{\perp}^2 \phi$ single helicity: h = m/n = 1 (m = n = 0, ..., 127) dissipation parameters: $S_{\text{Hp}} = 10^6$, $\nu = 10^{-6}$

2. Linear instability

Broad spectrum of unstable modesPeaking at large *m*

Study of q = 1 Triple Tearing Modes – p.8

2. Linear instability (2)

• Two important parameters: S_{Hp} and $D_{ij} = r_{\text{s}j} - r_{\text{s}i}$

Study of q = 1 Triple Tearing Modes – p.9

2. Linear instability (3)

Eigenmode structures

Parametersdeterminingrelative stengthof the modes:

- local magnetic shears
 - $s_i = s(r_{\mathrm{s}i})$
- distance D_{ij}

3. Early nonlinear evolution of the m = 1 **mode**

Study of q = 1 Triple Tearing Modes – p.11

3. Early nonlinear evolution of the m = 1 **mode**

Energy evolution

3. Early nonlinear evolution of the m = 1 mode (2): NL driving

3. Early nonlinear evolution of the m = 1 mode (2): NL driving

3. Early nonlinear evolution of the m = 1 mode (2): NL driving

3. Early nonlinear evolution of the m = 1 mode (3): Fast trigger

3. Early nonlinear evolution of the m = 1 mode (3): Fast trigger

onset much faster than expected from linear growth rate

Study of q = 1 Triple Tearing Modes – p.13

4. Random perturbation

4. Random perturbation (2)

- Partial collapse without precursor
- Generation of electromagnetic turbulence

5. Overview

Study response to different kinds of perturbations

5. Overview (2)

6. Partial reconnection

Study of q = 1 Triple Tearing Modes – p.18

6. Partial reconnection

Scenarios for partial reconnection

- Scenario 1: saturation due to reduced drive
 - observed after <u>random</u> perturbation of configurations with γ_{max} at $m \sim \mathcal{O}(10)$

6. Partial reconnection

Scenarios for partial reconnection

- Scenario 1: saturation due to reduced drive
 - observed after <u>random</u> perturbation of configurations with γ_{\max} at $m \sim \mathcal{O}(10)$
- Scenario 2: "dynamic saturation"
 - ♦ in cases where kink continues to grow
 → experiences "rebound" and decays
 → axisymmetry restored, q₀ < 1

6. Partial reconnection (2)

Partial collapse due to "dynamic saturation"

[MOVIE: TTM, γ_{lin} peaks at m = 13]

Study of q = 1 Triple Tearing Modes – p.19

6. Partial reconnection (3)

Partial collapse due to "dynamic saturation"

7. Summary

• Three q = 1 resonant surfaces

- broad spectrum of unstable TTMs peaking at high *m*
- fast trigger for m = 1 mode due to nonlinear driving
- possibility of annular collapse without precursor
- generation of electromagnetic turbulence
- partial reconnection

8. Conclusions and Perspectives

- May give valuable insights into dynamics of sawtooth collapses, e.g., partial collapses during compound sawteeth
- Paradigm to study the interaction between the internal kink and electromagnetic turbulence

large-scale		meso-scale
instability	\leftrightarrow	fluctuations
$(m \sim \mathcal{O}(1))$		$(m \sim \mathcal{O}(10))$

Acknowledgements

A.B. would like to thank Prof. Y. Kishimoto, Assoc. Prof. Y. Nakamura, and Assoc. Prof. M. Yagi for valuable discussions.

This work is partially supported by the 21st Century COE Programme at Kyoto University.

