
Study of q = 1 Triple Tearing
Modes

Andreas Bierwage1, Satoshi Hamaguchi2, Masahiro Wakatani1†,
Sadruddin Benkadda3 and Xavier Leoncini3

1: Kyoto University, Dept. Fundamental Energy Science, Japan
2: Osaka University, Graduate School of Engineering, Science and Technology Center for

Atoms, Molecules, and Ions Control (STAMIC), Japan
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Introduction

� Sawtooth oscillations
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Introduction

� Partial collapse
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Introduction

� Multiple q = 1 resonant surfaces may form
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Motivations

� Sawtooth oscillations
� (-) degrade confinement
� (+) impurity/ash removal

� Possibility of partial sawtooth collapse
� no mixing of central core region

� Partial collapses may be preferable to full
sawtooth crashes

⇒ detailed understanding of the partial collapse
dynamics may open interesting possibilities for the
control of tokamak discharges
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Motivations (2)

� Multiple q = 1 resonant surfaces
� may appear after preceeding partial crashes

� Simplest case with q0 < 1:
Three q = 1 resonant surfaces
� give rise to triple tearing modes (TTMs)

⇒ study of linear instability
characteristics and nonlinear
evolution of TTMs
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Outline

1. Model: Reduced MHD

2. Linear instability characteristics
� broad spectrum of unstable modes

3. m = 1 mode in the early nonlinear regime
� “fast trigger” mechanism

4. Random perturbation
� partial collapse without precursor
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Outline (2)

5. Overview: TTMs responding to
various kinds of perturbations

6. Partial reconnection:
� rebound, or “dynamic saturation”

7. Summary

8. Conclusion and perspectives
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1. Model: Reduced MHD

∂tψ = [ψ, φ] − ∂ζφ −
1

SHp
(η̂ j − E0)

∂tu = [u, φ] + [j, ψ] + ∂ζ j + ν∇2
⊥u

with j = −∇2
⊥

ψ and u = ∇2
⊥

φ

single helicity: h = m/n = 1 (m = n = 0, ..., 127)

dissipation parameters: SHp = 106, ν = 10−6
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2. Linear instability
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� Broad spectrum of unstable modes
� Peaking at large m
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2. Linear instability (2)

� Two important parameters:
SHp and Dij = rsj − rsi
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2. Linear instability (3)

Eigenmode structures
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Parameters
determining
relative stength
of the modes:

� local magnetic
shears
si = s(rsi)

� distance Dij
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3. Early nonlinear evolution of
the m = 1 mode
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3. Early nonlinear evolution of
the m = 1 mode

Energy evolution
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3. Early nonlinear evolution of
the m = 1 mode (2): NL driving
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3. Early nonlinear evolution of
the m = 1 mode (2): NL driving
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3. Early nonlinear evolution of
the m = 1 mode (2): NL driving
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3. Early nonlinear evolution of
the m = 1 mode (3): Fast trigger

60 80 100 120 140 160 180 200 220
−0.1

−0.05

0

0.05

0.1

0.15

0.2
gr

ow
th

 ra
te

s

t

γ
m

(m=1)
γ
k
(m=1)

linear growth nonlinearly driven growth

partial
collapse

E ~ exp(γ
lin

t) 

E ~ exp(2γ
max

t) 

Study of q = 1 Triple Tearing Modes – p.13



3. Early nonlinear evolution of
the m = 1 mode (3): Fast trigger
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4. Random perturbation
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4. Random perturbation (2)

� Partial collapse without precursor
� Generation of electromagnetic turbulence
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5. Overview

Study response to different kinds of perturbations

only mode  
(m,n)=(1,1)

local
perturbation

random
perturbation

Case (I) Case (II) Cases (III) 
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5. Overview (2)
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6. Partial reconnection
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6. Partial reconnection

Scenarios for partial reconnection

� Scenario 1: saturation due to reduced drive
� observed after random perturbation of

configurations with γmax at m ∼ O(10)
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6. Partial reconnection

Scenarios for partial reconnection

� Scenario 1: saturation due to reduced drive
� observed after random perturbation of

configurations with γmax at m ∼ O(10)

� Scenario 2: “dynamic saturation”
� in cases where kink continues to grow
→ experiences “rebound” and decays
→ axisymmetry restored, q0 < 1
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6. Partial reconnection (2)

Partial collapse due to “dynamic saturation”

[MOVIE: TTM, γlin peaks at m = 13]
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6. Partial reconnection (3)

Partial collapse due to “dynamic saturation”
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7. Summary

� Three q = 1 resonant surfaces
� broad spectrum of unstable TTMs

peaking at high m
� fast trigger for m = 1 mode due to

nonlinear driving
� possibility of annular collapse

without precursor
� generation of electromagnetic turbulence
� partial reconnection
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8. Conclusions and Perspectives

� May give valuable insights into dynamics of
sawtooth collapses, e.g., partial collapses
during compound sawteeth

� Paradigm to study the interaction between the
internal kink and electromagnetic turbulence

large-scale meso-scale
instability ↔ fluctuations

(m ∼ O(1)) (m ∼ O(10))
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