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Introduction

* A fundamental stability limit for Smart Shell feedback with external coils, radial
field sensors and open-loop transfer function with upper cutoff Q:

— the upper cutoff frequency of the feedback system must be at least as large
as the open-loop growth rate of the instability

* Modeling shows that a system using external feedback coils and poloidal field
sensors can stabilize a mode with growth rate exceeding the “speed” of the
system itself, i.e. Q

— Only with proper arrangements of the coupling between coils and sensors

* Using internal feedback coils, the stabilization “speed” of the system can be
exceeded with less stringent requirements on the coil-sensor coupling
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Maximum stable gain observed in DIlI-D
feedback experiments

* Maximum stable gain and frequency of the oscillation that occurs when that
maximum is exceeded were measured for both vacuum and stable plasma cases

* Using only proportional gain and feedback algorithm varying from Smart Shell to
Simple Mode Control
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Maximum stable gain and frequency of
oscillation vary widely with feedback algorithm

» Different types of feedback algorithm possible on DIiI-D:
— Smart Shell feedback = strongly coil-sensor coupling
- “Full” Mode Control = no vacuum coil-sensor coupling

— “Simple” Mode Control = no direct coil-sensor coupling, retains coupling
through eddy currents
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Maximum stable gain is smaller in presence of

» Using only proportional gain and feedback algorithm varying from Smart Shell to
Simple Mode Control
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Semiquantitative model includes the effects of
realistic electronics

* Model can be used for quantitative predictions through a conversion factor accounting
for differences in mutual inductance values between model and experiment

- A.M. Garofalo, T.H. Jensen, and E.J. Strait, Phys. Plasmas 9, 4573 (2002)
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Slab model treats all currents as sheet current
distributions

blasma Sensof Colland  Feedback
o Assume: Resistive Wall  Coil Current

-l |zl kel i
o o . -kl x-hl
d/dt =iwt /XV\

— hxl —

d/dy=ik,, k =n/R . o kbl

§/§z=ikp, kp=m/r, k=1/kf+k§ - {) b X

* Perturbed magnetic field:
7. . = — A k i(k,y+k,z)
b=Vxa, a=|z- T Y [p(x)e

* The value of a at x can be calculated using the Green’s functions for a current sheet
J;at x;:
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Only one mode involved => plasma response given
by only one parameter (e.g. instability strength)

dp(x)
@(x) ox
— Equivalent to the assumption for the plasma current:

Boundary condition (external feedback coils):

[
>

x=0"

T, =-LAG0), A=(k-A)et
0

Wall currents:  J,, = —iiwa(0)2krw , Ty = Oty

Uy 2kn
For Smart Shell feedback with sensors measuring the flux at the resistive wall the

feedback currentis: J, =-G(iw)p/M

: : 1(A
Dispersion relation: a —iwt, —G(iw)=0, a= —5(; + 1) . A=Y,Ty
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Broader amplifier bandwidth improves
feedback stabilization effectiveness

Q .
* Simpleexample: G(iw) = , (=2
imple examp (iw) 8pg+l.w ( )
* Dispersion relation: g?n
T = =0
- With solutions: .
ith solutions 10
0T =1 a—Qri\/(a—Qr)2+4Qr(a—gp)] Stable
51 ——Op=u
»  Stability requires Refiw} < 0, therefore: U nslable\/
0
Qr=a=y,T 0.2

Qarloq:gm time (1/o = ﬂrufw.a —>
- i.e. bandwidth of the feedback system must be
at least as large as the open-loop growth rate of the instability
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Measured DIlI-D “hardware” gain is fitted to analytic
function and inserted into dispersion relation
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Smart Shell algorithm yields best performance with
C-coil feedback using radial field sensors in DIlI-D

» Simple Mode Control is obtained by
removing from the sensor signal the
direct coupling between Br sensors and
feedback currents

* Dispersion relation:

o —iwTy, — M =0,

* Full Mode Control is obtained by
removing from the sensor signal the low-
pass filtered (t,,) contribution from the

feedback currents
* Dispersion relation:
G(iw)
G(iw)
l+iwt,

o —iwTy, — =0

j -
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Slab model extended to simulate feedback
using poloidal field sensors

* Feedback current with poloidal field sensors inside the vessel:

. I . .
J (1) = _G(lw __PM = —G(lw)k(p(O,t)= (1+2a) G(lw)QO(O,t)
M’ k. ox |,
Dispersion relation: a—-ioty, +(1+20)G(iw) =0

* Mode Control is achieved by removing from the sensor signal the direct coupling
between Bp sensors and feedback coils:

(I1+2a)G(iw) 0
1-Gliw)

Simple Mode Control: o —-iwty, +

(1+20)G(iw)
1- G(iw)/(1+ iwt)

Full Mode Control: o -iwt,, +
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Feedback with Bp sensors can stabilize mode with
growth rate exceeding “speed” of system itself

* Back to simple example for analytical demonstration:

, Q .
G(iw) =g, —, (Q=Q)
Q+iw

* For Simple Mode Control feedback with either radial or poloidal field sensors, the
condition for stability is: y
Q=19
1-g,
* Note stable values of g are:
- Negative, for poloidal field sensors (stabilizing feedback tries to increase the

perturbed poloidal field)

- Positive, for radial field sensors (stabilizing feedback tries to reduce the perturbed
radial field)

» The requirements on the upper cutoff frequency of the system are
lower with poloidal field sensors!!
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Advantage of poloidal field sensors (over radial)
apparent also with realistic feedback transfer function

» Largest stabilizable growth rate using e Simiple Mode Control
radial field sensors was < 1000 s —  smart Shell

e FUll Mode Control

*  Simple Mode Control yields best [ Externdgl Colls
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New boundary condition is necessary to
simulate feedback using internal feedback coils

1 de(x)
@(x)  ox |.__,-

A

* Boundary condition (feedback coils at x=-b<0):

— Equivalent to the assumption for the plasma current:

.7P =—LQE(—19) ’ Q=<k_A)ek(a—b)
Uy

* The feedback current with sensors measuring the poloidal field between the
feedback coils and the resistive wall is:

-__G(iw) kb, _
- re™@(=b,1) = (1+2a)e

J. ()= - 1w Gliw)

G(w))[ ; , Jp(x,1) @(=b,1)

M’ ox

x=-b" |

Dispersion relation: 6 - iwt,,[(0+1)I' - 1]+ (1 +20)G(iw)[iwt, T +1] =0
(04

(a +1)e -
1-

—2kb
e
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Easier to beat system “speed” using internal
instead of external feedback-coils

* With external feedback coils, the advantage of poloidal field sensors applies only to
Simple Mode Control feedback, i.e. sensors and feedback coils partailly decoupled

* With internal feedback coils, the advantage applies even to feedback with strongly
coupled sensors and feedback coils:

— Assume coils at x =-b < 0 and sensors measuring the poloidal field at x = -b*

— The condition for stability is: Q> Yo
1- (1 —e_Zkb)(1+ o+ g, +2ag,)

» The requirement on the upper cutoff frequency of the system is

eased if: __l+a
& =T 2a
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Performance of all feedback algorithms is improved
with I-coil and poloidal field sensors in DIlI-D

» Largest stabilizable growth rate using
radial field sensors and external coils

=== Simpile Mode Control
———— Smart Shell
was < 1000 s e UL Mode Control

Internal Coils

o Simple Mode Control yields best Poloidal Field Sensors

performance with I-coil feedback using
poloidal field sensors in DIlI-D
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Summary

* Modeling a current-controlled feedback system with realistic open-loop transfer function
— Feedback with external coils and radial field sensors

v" Necessary condition for stability is that the “speed” of the system itself must be
at least as large as the open-loop growth rate of the instability

- Feedback with external coils and poloidal field sensors

v’ Partially decoupled feedback can stabilize a mode with growth rate exceeding
the “speed” of the system itself

- Using internal feedback coils, the stabilization “speed” of the system can be
exceeded with less stringent requirements on the coil-sensor coupling
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Some definitions

DIl-D o
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Wavenumber in toroidal direction
Wavenumber in poloidal direction

Mutual inductance between control coils (at x=b 0) and

radial field sensors (at x=0)

Poloidal field at the wall (x=0)

Mutual inductance between control coils (at x=b 0) and

poloidal field sensors (at x=0-)

Resistive wall time constant (~3.5 ms for RWM in DIII-D)

Open-loop growth rate in units of T (

Proportional feedback gain

Time-derivative feedback gain

)

o=Yy,T

Proportional-gain time constant (sets frequency cutoff for low-

pass filter): noise reduction

Derivative-gain time constant (sets frequency cutoff for

high-pass filter)



