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Introduction

• A fundamental stability limit for Smart Shell feedback with external coils, radial
field sensors and open-loop transfer function with upper cutoff Ω:

– the upper cutoff frequency of the feedback system must be at least as large
as the open-loop growth rate of the instability

• Modeling shows that a system using external feedback coils and poloidal field
sensors can stabilize a mode with growth rate exceeding the “speed” of the
system itself, i.e. Ω

– Only with proper arrangements of the coupling between coils and sensors
• Using internal feedback coils, the stabilization “speed” of the system can be

exceeded with less stringent requirements on the coil-sensor coupling
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Maximum stable gain observed in DIII-D
feedback experiments

• Maximum stable gain and frequency of the oscillation that occurs when that
maximum is exceeded were measured for both vacuum and stable plasma cases

• Using only proportional gain and feedback algorithm varying from Smart Shell to
Simple Mode Control



Maximum stable gain and frequency of
oscillation vary widely with feedback algorithm

• Different types of feedback algorithm possible on DIII-D:
– Smart Shell feedback = strongly coil-sensor coupling
– “Full” Mode Control = no vacuum coil-sensor coupling
– “Simple” Mode Control = no direct coil-sensor coupling, retains coupling

through eddy currents



Maximum stable gain is smaller in presence of
plasma

• Using only proportional gain and feedback algorithm varying from Smart Shell to
Simple Mode Control



Semiquantitative model includes the effects of
realistic electronics

• Model can be used for quantitative predictions through a conversion factor accounting
for differences in mutual inductance values between model and experiment

– A.M. Garofalo, T.H. Jensen, and E.J. Strait, Phys. Plasmas 9, 4573 (2002)



Slab model treats all currents as sheet current
distributions

• Assume:

• Perturbed magnetic field:

• The value of     at x can be calculated using the Green’s functions for a current sheet
Ji at xi:
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Only one mode involved => plasma response given
by only one parameter (e.g. instability strength)

• Boundary condition (external feedback coils):

– Equivalent to the assumption for the plasma current:

• Wall currents:

• For Smart Shell feedback with sensors measuring the flux at the resistive wall the

feedback current is:

• Dispersion relation:
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• Simple example:

• Dispersion relation:

– With solutions:

• Stability requires Re{iω} < 0, therefore:

– i.e. bandwidth of the feedback system must be
at least as large as the open-loop growth rate of the instability

Broader amplifier bandwidth improves
feedback stabilization effectiveness
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Measured DIII-D “hardware” gain is fitted to analytic
function and inserted into dispersion relation

€ 

G(iω) =GPCS (iω) ×GHrdwr (iω)

€ 

GHrdwr(iω) =
ΩU1

ΩU1
+ iω

×
ΩU2

ΩU2
+ iω

€ 

GPCS (iω) =
1

1+ iωτ P

 gP +
gDiωτD

1+ iωτD

 

 
 

 

 
 e
iωτ delay



• Simple Mode Control is obtained by
removing from the sensor signal the
direct coupling between Br sensors and
feedback currents

• Dispersion relation:

• Full Mode Control is obtained by
removing from the sensor signal the low-
pass filtered (τW) contribution from the
feedback currents

• Dispersion relation:

Smart Shell algorithm yields best performance with
C-coil feedback using radial field sensors in DIII-D
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Slab model extended to simulate feedback
using poloidal field sensors
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• Feedback current with poloidal field sensors inside the vessel:

• Mode Control is achieved by removing from the sensor signal the direct coupling
between Bp sensors and feedback coils:

Dispersion relation:

Simple Mode Control:
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Feedback with Bp sensors can stabilize mode with
growth rate exceeding “speed” of system itself

• Back to simple example for analytical demonstration:

• For Simple Mode Control feedback with either radial or poloidal field sensors, the
condition for stability is:

• Note stable values of gP are:

– Negative, for poloidal field sensors (stabilizing feedback tries to increase the
perturbed poloidal field)

– Positive, for radial field sensors (stabilizing feedback tries to reduce the perturbed
radial field)

» The requirements on the upper cutoff frequency of the system are
lower with poloidal field sensors!!
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• Largest stabilizable growth rate using
radial field sensors was < 1000 s-1

• Simple Mode Control yields best
performance with C-coil feedback using
poloidal field sensors in DIII-D

Advantage of poloidal field sensors (over radial)
apparent also with realistic feedback transfer function



• Boundary condition (feedback coils at x = -b < 0 ):

– Equivalent to the assumption for the plasma current:

• The feedback current with sensors measuring the poloidal field between the
feedback coils and the resistive wall is:

New boundary condition is necessary to
simulate feedback using internal feedback coils
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Easier to beat system “speed” using internal
instead of external feedback-coils

• With external feedback coils, the advantage of poloidal field sensors applies only to
Simple Mode Control feedback, i.e. sensors and feedback coils partailly decoupled

• With internal feedback coils, the advantage applies even to feedback with strongly
coupled sensors and feedback coils:

– Assume coils at x = -b < 0 and sensors measuring the poloidal field at x = -b+

– The condition for stability is:

» The requirement on the upper cutoff frequency of the system is

eased if:
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• Largest stabilizable growth rate using
radial field sensors and external coils
was < 1000 s-1

• Simple Mode Control yields best
performance with I-coil feedback using
poloidal field sensors in DIII-D

Performance of all feedback algorithms is improved
with I-coil and poloidal field sensors in DIII-D



Summary

• Modeling a current-controlled feedback system with realistic open-loop transfer function
– Feedback with external coils and radial field sensors

 Necessary condition for stability is that the “speed” of the system itself must be
at least as large as the open-loop growth rate of the instability

– Feedback with external coils and poloidal field sensors
 Partially decoupled feedback can stabilize a mode with growth rate exceeding

the “speed” of the system itself
– Using internal feedback coils, the stabilization “speed” of the system can be

exceeded with less stringent requirements on the coil-sensor coupling



Some definitions
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Proportional-gain time constant (sets frequency cutoff for low-
pass filter): noise reduction
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