Advantages of Poloidal Field Sensors in RWM Feedback

Andrea M. Garofalo

Columbia University, New York, NY 10027, USA

9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS"

November 21-23, 2004 PRINCETON PLASMA PHYSICS LABORATORY

Introduction

- A fundamental stability limit for Smart Shell feedback with <u>external</u> coils, <u>radial</u> field sensors and open-loop transfer function with upper cutoff Ω :
 - the upper cutoff frequency of the feedback system must be at least as large as the open-loop growth rate of the instability
- Modeling shows that a system using <u>external</u> feedback coils and <u>poloidal</u> field sensors can stabilize a mode with growth rate exceeding the "speed" of the system itself, i.e. Ω
 - Only with proper arrangements of the coupling between coils and sensors
- Using <u>internal</u> feedback coils, the stabilization "speed" of the system can be exceeded with less stringent requirements on the coil-sensor coupling

Maximum stable gain observed in DIII-D feedback experiments

- Maximum stable gain and frequency of the oscillation that occurs when that maximum is exceeded were measured for both vacuum and stable plasma cases
- Using only proportional gain and feedback algorithm varying from Smart Shell to Simple Mode Control

Maximum stable gain and frequency of oscillation vary widely with feedback algorithm

- Different types of feedback algorithm possible on DIII-D:
 - Smart Shell feedback = strongly coil-sensor coupling
 - "Full" Mode Control = no vacuum coil-sensor coupling
 - "Simple" Mode Control = no direct coil-sensor coupling, retains coupling through eddy currents

Maximum stable gain is smaller in presence of plasma

• Using only proportional gain and feedback algorithm varying from Smart Shell to Simple Mode Control

Semiquantitative model includes the effects of realistic electronics

• Model can be used for quantitative predictions through a conversion factor accounting for differences in mutual inductance values between model and experiment

– A.M. Garofalo, T.H. Jensen, and E.J. Strait, *Phys. Plasmas* 9, 4573 (2002)

Slab model treats all currents as sheet current distributions

• Perturbed magnetic field:

$$\overline{b} = \overline{\nabla} \times \overline{a} , \quad \overline{a} = \left(\hat{z} - \frac{k_p}{k_t}\hat{y}\right) \varphi(x) e^{i(k_t y + k_p z)}$$

• The value of \overline{a} at x can be calculated using the Green's functions for a current sheet J_i at x_i :

$$\overline{a}(x, y, z) = \sum_{i} \frac{\mu_0}{2\sqrt{k_t^2 + k_p^2}} J_i(x) e^{i(k_t y + k_p z)} \left(\hat{z} - \frac{k_p}{k_t} \hat{y}\right) e^{-\sqrt{k_t^2 + k_p^2} |x - x_i|}$$

Only one mode involved => plasma response given by only one parameter (e.g. instability strength)

• Boundary condition (external feedback coils):

$$\left. \frac{1}{\varphi(x)} \frac{\partial \varphi(x)}{\partial x} \right|_{x=0^{-}} = \Lambda$$

- Equivalent to the assumption for the plasma current:

$$\overline{J}_P = -\frac{1}{\mu_0} A \overline{a}(0) , \quad A = (k - \Lambda) e^{ka}$$

- Wall currents: $\overline{J}_W = -\frac{1}{\mu_0} i\omega \overline{a}(0) 2k\tau_W$, $\tau_W \equiv \frac{\delta\mu_0}{2k\eta}$
- For Smart Shell feedback with sensors measuring the flux at the resistive wall the

feedback current is: $J_F = -G(i\omega)\varphi/M$

• Dispersion relation: $\alpha - i\omega\tau_w - G(i\omega) = 0$, $\alpha = -\frac{1}{2}\left(\frac{\Lambda}{k} + 1\right)$, $\alpha = \gamma_0\tau_w$

Broader amplifier bandwidth improves feedback stabilization effectiveness

- Simple example: $G(i\omega) = g_P \frac{\Omega}{\Omega + i\omega}$, $(\Omega = \Omega^*)$ **Dispersion relation:** • gР $\alpha - i\omega\tau - g_P \frac{\Omega}{\Omega + i\omega} = 0$ 15 Unst. $\Omega \tau = 5$ With solutions: 10 $i\omega\tau = \frac{1}{2} \left[\alpha - \Omega\tau \pm \sqrt{\left(\alpha - \Omega\tau\right)^2 + 4\Omega\tau\left(\alpha - g_P\right)} \right]$ Stable 5 $g_{P} = \alpha$ Stability requires $\Re\{i\omega\}$ < 0, therefore: ٠ Unstable Ω $\Omega \tau \ge \alpha = \gamma_0 \tau$ 0.6 02 1.6 Open-loop growth time $(1/\alpha = \tau_0/\tau_W) \rightarrow$
 - i.e. bandwidth of the feedback system must be at least as large as the open-loop growth rate of the instability

Measured DIII-D "hardware" gain is fitted to analytic function and inserted into dispersion relation

Smart Shell algorithm yields best performance with C-coil feedback using radial field sensors in DIII-D

Slab model extended to simulate feedback using poloidal field sensors

• Feedback current with poloidal field sensors inside the vessel:

$$J_{F}(t) = -\frac{G(i\omega)}{M'} \left[-\frac{k_{p}}{k_{t}} \frac{\partial \varphi(x,t)}{\partial x} \right|_{x=0^{-}} \right] = -\frac{G(i\omega)}{kM} \lambda \varphi(0,t) = (1+2\alpha) \frac{G(i\omega)}{M} \varphi(0,t)$$

Dispersion relation:

$$\alpha - i\omega\tau_w + (1 + 2\alpha)G(i\omega) = 0$$

• Mode Control is achieved by removing from the sensor signal the direct coupling between Bp sensors and feedback coils:

Simple Mode Control:
$$\alpha - i\omega\tau_w + \frac{(1+2\alpha)G(i\omega)}{1-G(i\omega)} = 0$$

Full Mode Control:
$$\alpha - i\omega\tau_w + \frac{(1+2\alpha)G(i\omega)}{1 - G(i\omega)/(1+i\omega\tau)} = 0$$

Feedback with Bp sensors can stabilize mode with growth rate exceeding "speed" of system itself

• Back to simple example for analytical demonstration:

$$G(i\omega) = g_P \frac{\Omega}{\Omega + i\omega}$$
, $(\Omega = \Omega^*)$

• For Simple Mode Control feedback with either radial or poloidal field sensors, the condition for stability is: v_{o}

$$\Omega \ge \frac{\gamma_O}{1 - g_P}$$

- Note stable values of g_P are:
 - Negative, for poloidal field sensors (stabilizing feedback tries to increase the perturbed poloidal field)
 - Positive, for radial field sensors (stabilizing feedback tries to reduce the perturbed radial field)
 - » The requirements on the upper cutoff frequency of the system are lower with poloidal field sensors!!

Advantage of poloidal field sensors (over radial) apparent also with realistic feedback transfer function

New boundary condition is necessary to simulate feedback using internal feedback coils

- Boundary condition (feedback coils at x = -b < 0): $\frac{1}{\varphi(x)} \frac{\partial \varphi(x)}{\partial x} \Big|_{x=-b^-} \equiv \Lambda$
 - Equivalent to the assumption for the plasma current:

$$\overline{J}_P = -\frac{1}{\mu_0} Q\overline{a}(-b) , \quad Q = (k - \Lambda) e^{k(a-b)}$$

• The feedback current with sensors measuring the poloidal field between the feedback coils and the resistive wall is:

$$J_F(t) = -\frac{G(i\omega)}{M'} \left[-\frac{k_p}{k_t} \frac{\partial \varphi(x,t)}{\partial x} \Big|_{x=-b^+} \right] = -\frac{G(i\omega)}{kM} \lambda e^{-kb} \varphi(-b,t) = (1+2\alpha) e^{-kb} \frac{G(i\omega)}{M} \varphi(-b,t)$$

Dispersion relation: $\theta - i\omega\tau_{W} [(\theta + 1)\Gamma - 1] + (1 + 2\theta)G(i\omega)[i\omega\tau_{W}\Gamma + 1] = 0$

$$\theta = \frac{\alpha}{(\alpha + 1)e^{2kb} - \alpha}$$
$$\Gamma = 1 - e^{-2kb}$$

Easier to beat system "speed" using internal instead of external feedback-coils

- With external feedback coils, the advantage of poloidal field sensors applies only to Simple Mode Control feedback, i.e. sensors and feedback coils partailly decoupled
- With internal feedback coils, the advantage applies even to feedback with strongly coupled sensors and feedback coils:
 - Assume coils at x = -b < 0 and sensors measuring the poloidal field at $x = -b^+$

- The condition for stability is:
$$\Omega \ge \frac{\gamma_O}{1 - (1 - e^{-2kb})(1 + \alpha + g_P + 2\alpha g_P)}$$

» The requirement on the upper cutoff frequency of the system is eased if: $g_P \le -\frac{1+\alpha}{1+2\alpha}$

Performance of all feedback algorithms is improved with I-coil and poloidal field sensors in DIII-D

- Largest stabilizable growth rate using radial field sensors and external coils was < 1000 s⁻¹
- Simple Mode Control yields best performance with I-coil feedback using poloidal field sensors in DIII-D

Summary

- Modeling a current-controlled feedback system with realistic open-loop transfer function
 - Feedback with <u>external</u> coils and radial field sensors
 - ✓ Necessary condition for stability is that the "speed" of the system itself must be at least as large as the open-loop growth rate of the instability
 - Feedback with <u>external</u> coils and poloidal field sensors
 - ✓ Partially decoupled feedback can stabilize a mode with growth rate exceeding the "speed" of the system itself
 - Using <u>internal</u> feedback coils, the stabilization "speed" of the system can be exceeded with less stringent requirements on the coil-sensor coupling

Some definitions

$$k_{t} = n/R \quad \text{Wavenumber in toroidal direction} \qquad k = \sqrt{k_{t}^{2} + k_{p}^{2}}$$

$$k_{p} = m/r \quad \text{Wavenumber in poloidal direction} \qquad k = \sqrt{k_{t}^{2} + k_{p}^{2}}$$

$$M = \frac{\mu_{0}e^{-kb}}{2k} \quad \text{Mutual inductance between control coils (at x=b 0) and}$$

$$k_{z} = -\frac{k_{p}}{k_{t}} \frac{\partial\varphi(x,t)}{\partial x}\Big|_{x=0^{-}} \quad \text{Poloidal field at the wall (x=0^{-})}$$

$$M' = -kM \frac{k_{p}}{k_{t}} \quad \text{Mutual inductance between control coils (at x=b 0) and}$$

$$\tau \quad \text{Resistive wall time constant (~3.5 ms for RWM in DIII-D)}$$

- Open-loop growth rate in units of τ^{-1} () $\alpha = \gamma_0 \tau$ α

- Proportional feedback gain $g_{\rm P}$
- Time-derivative feedback gain g_{D}
- Proportional-gain time constant (sets frequency cutoff for low-pass filter): noise reduction $au_{ ext{P}}$
- Derivative-gain time constant (sets frequency cutoff for high-pass filter) $au_{
 m D}$

