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Motivation
• Understand β-limiting modes in DIII-D AT

– Tearing modes often observed near ideal-wall limits
• No obvious precursor in many cases classically unstable?

– n=1 RWM also sometimes observed despite rotation 
values that typically stabilize mode

• Try to use MARS code to interpret observations -
Attempt to understand interplay between:
– Ideal wall limits and tearing activity
– Plasma resistivity
– Plasma rotation
– RWM dissipation mechanisms
– Wall resistivity

• Initial applications to NSTX
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SYSTEMATIC STUDY INVESTIGATES DIII–D AT SCENARIO STABILITY

Understand expt. instabilities
Find stable J profile at βN ≥ 4
Investigate non-ideal effects
— Tearing stability
— RWM stability

Profiles from high βN = 4.1 shots 
of AT shape expt.
— βN > 4 achieved transiently
— High-κ DND (like modification)
Vary J profile to scan qmin
— Weakly reversed, q0-qmin < 1
— ρqmin = 0.4 - 0.5
— q95 = 5–5.5
— q99.7 fixed at 7.2

GOALS:

METHODOLOGY:
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FIND βN > 4 IDEALLY STABLE TO n =1–3 ONLY FOR qmin=1.5–1.9

Computed n=1,2,3 kink limits with and without DIII–D vessel (CHEASE + DCON)

n = 1–3 Stability Space:Kink stability space with Ωφ=0
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n=3 ideal-wall limit All n stable with ideal wall
Some n unstable without wall

Some n unstable w/ ideal wall

n=1-3 all stable without wall

βN = 4 ⇒ near ideal wall limit
βN > 4 ⇒ qmin= 1.5-1.9

High qmin has low no-wall limit

∆βN ≈ 1 for wide range of qmin

Kink Stability Space with Ωφ=0
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HIGH-βN AT SHOTS EXCEED NO-WALL LIMITS
AND APPROACH IDEAL-WALL LIMITS

1.7 < κ < 1.9,   ∆RSEP < 1cm
q0 – qmin > 0.1,    q95 > 4.5

Discharges shown below have:
(from high qmin, AT shape, and flat-q experiments)

n=1 ideal-wall limit locally 
minimum near qmin=1.6–2
— n=1 fast disruptions
— 2/1 modes excited near limit

n=1,2,3 ideal-wall limits 
similar in highest βN shots
— β saturation with n=2,3
— n=3 “X-events”

Experimental βN limits are 
generally lower at high qmin
— High βN’s have broader p

J. Ferron APS RI1.005
— Increased n=2,3 tearing
— n=1 RWM more unstable?

Experimental βN (with MSE) vs. qmin
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PROXIMITY TO IDEAL-WALL LIMIT CAN DESTABILIZE TEARING MODES 

Positive pole in ∆′ near ideal-wall limit can classically destabilize tearing modes 
(D. Brennan – Poster NP1.010 DPP-2004 + other papers)
— Kink vs. tearing mode excitation function of heating rate through ideal β-limit
2/1 tearing mode often observed at high βN as qmin → 1.5 from above
n >1 tearing mode (TM) more commonly observed when qmin > 2 
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Resistive kink-tearing mode investigated with MARS
Simple slab model of ∆′ driven by dJ/dr illustrates separation of tearing 
and kink marginal stability boundaries with ideal wall.
In MARS, a similar separation is evident when sufficiently large
resistivity is used, and a resistive kink-tearing mode is excited

Separation of marginal βN values increases with resistivity, as expected

Brennan, Phys. Plasmas, Vol.10, No.5, May 2003

MARS n=1 for DIII-D
Ideal wall at vessel
Ωφ = 0, qmin=1.8
Expt. η profile

βN

Expt. value
for DIII-D

η(0)
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Rotation can enhance resistive-kink-tearing mode growth

Expt. η profile

η = 0
Ωφ=0

Ωφ = 0
Ωφ = 0.1 × Ωφ-expt
Ωφ = 0.5 × Ωφ-expt

MARS n=1 for DIII-D
Ideal wall at vessel

qmin=1.8

Note smaller dγ/dβ
near marginality

from finite η

• Need to test role of rotational-shear on stability
– Flat Ωφ profile not destabilizing to plasma mode in similar RWM 

studies with stronger dissipation.
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SHEARED ROTATION PREDICTED TO REDUCE n =1 IDEAL-WALL LIMIT

10% reduction in n=1 ideal-wall limit near qmin=1.6 typical

Possible explanation for observed offset in limits?
— Strong dissipation enhances destabilization effect
Experimental uncertainty in β and β-limit also ≈ 5–10%

MARS n=1 γ vs. βN and rotation for qmin = 1.6

Sound wave 
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Dissipation predicted to dominate η in high-Ωφ conditions

n=1 plasma mode, qmin = 1.8
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• Plasma-mode γ insensitive to η for sound 
wave damping & Ωφ required to stabilize RWM

Ideal plasma treatment of plasma-mode
stabilization valid for DIII-D S=τR/τA values?

n=1 plasma mode, qmin = 1.8

However, dissipation may be
destabilizing below ideal-wall limit
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Do these results change if the (perpendicular) kinetic damping model is used?
Need to understand interplay between dissipation and η at mode-rational surfaces…
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qmin >2 MAY BE MORE UNSTABLE TO n =1 RESISTIVE WALL MODES

Predict n=1 RWM unstable near βN = 3.5 
for Ωφ ≈ Ωφ-expt for qmin > 2

Observe increased RWM/EF feedback 
activity at high βN (using C-coil feedback)

113699
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DIII-D Shot 113850 at t=1800ms
MARS n=1 mode γ vs. βN and Ωφ
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n=1 RWM stability depends strongly on damping model 

DIII-D Shot 113850 at t=1800ms
MARS n=1 mode γ vs. βN and Ωφ

2.5 3.0 3.5 4.0 4.5 5.0 5.5
βN

-4

-2

0

2

4

6

8

10

γ 
τ W

al
l

η=0.00x10-9, Parallel SW damping (κ||=0.28)

0.500 (+)
1.00
1.50
2.00
2.50

Ωφ / Ωφ (Expt)
_________________

 <_ No-wall limit
       for Ωφ=0 Ideal-wall limit _> 

MARS SW damping ⇒ Ωφ-crit ≈ 2 × Ωexpt
Kinetic damping ⇒ Ωφ-crit ≈ 0.5-0.6 × Ωexpt

• Predict n=1 RWM instability near βN = 3.5 for expt. rotation for qmin > 2 
only for the sound-wave damping model.

κ|| = 0.28

• Critical rotation frequency differs by factor of 4 for qmin = 2.2
• Kinetic damping model RWM most unstable near ideal-wall limit

qmin = 2.2
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BOTH MARS DAMPING MODELS PREDICT INCREASED Ωφ-CRIT WHEN qmin >2

Sound wave (SW) damping model
predicts much larger Ωφ-crit than

kinetic damping model for qmin > 2

DIII–D n=1 RWM critical-Ωφ studies:
— Usually, qmin = 1.5 – 1.8
— Ωφ-crit(q=3)/ωA ≈ 1% in experiment
— SW damping over-predicts Ωφ-crit
— Kinetic damping under-predicts

(La Haye, to be published in NF)

Actual Ωφ-crit bounded by these?

MARS n=1 RWM critical Ωφ(q=3) / ωA
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AT shape experiment used qmin < 2
— Experiment approached ideal-wall limits using C-coil EF correction only 
— Ωφ-expt >  Ωφ-crit from both damping models - consistent with experiment

Resonances at q=2 surface dominate collisionless damping when qmin < 2
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Plasma η can enhance instability of Ωφ=0 RWM 

NSTXCompute γ with varied τWALL

• Ideal plasma
– γτWALL ≈ constant
– γ ≈ γAlfven above ideal-wall limit

• Resistive plasma:
– η increases γτWALL for large τWALL

• Factor of 2 in γ near Cβ = 0.5
– Apparent lowering of no-wall limit

Ideal plasma

Resistive
plasma

κ|| = 0.28
SW damping

Ωφ = 0
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Plasma η can affect rotational stabilization of RWM

• For this case, the RWM is not 
stabilized when η = ηEXPT

• Saturated RWM, TM, or η-kink?
– Mode has ωτWALL ≈ 40 (f = few kHz)

• Usual RWM stabilization via 
rotation observed for η = 0 
with strong dissipation

κ|| = 0.56
SW damping
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Some evidence for saturated modes on NSTX 
• Broad J profile (early H-mode) excites long-lived n=1 mode

– SXR consistent with m=5 edge island
• Mirnovs show m ≥ 4 on similar shots

• Is this tearing of the plasma mode above the no-wall limit? 
– Result of low edge η in NSTX?

5/1
mode
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Summary

• Systematic stability studies find sustained AT 
operation with βN > 4 difficult for typical profiles
– Proximity to ideal-wall limit can excite n=1-3 TMs

• This effect can be modeled in MARS by including resistivity
• Sheared rotation also destabilizing near ideal-wall limit

• Collisionless/resonant dissipation models for RWM 
sensitive to presence of q=2 surface in plasma
– MARS predicts n=1 RWM more unstable when qmin > 2

• Initial calculations for NSTX find plasma η can 
destabilize the RWM even with dissipation and Ωφ
– Dependence on S, profiles, etc. not yet clear
– May result in weakly unstable modes that tear and saturate
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