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Motivation

e Understand B-limiting modes in DIII-D AT

— Tearing modes often observed near ideal-wall limits
* No obvious precursor in many cases =» classically unstable?

— n=1 RWM also sometimes observed despite rotation
values that typically stabilize mode

* Try to use MARS code to interpret observations -
Attempt to understand interplay between:

— ldeal wall limits and tearing activity
— Plasma resistivity

— Plasma rotation

— RWM dissipation mechanisms

— Wall resistivity

 |nitial applications to NSTX
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SYSTEMATIC STUDY INVESTIGATES DIlI-D AT SCENARIO STABILITY
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FIND 3, >4 IDEALLY STABLE TO n=1-3 ONLY FOR q,,,=1.5-1.9

e Computed n=1,2,3 kink limits with and without DIII-D vessel (CHEASE + DCON)
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Some n unstable w/ ideal wall
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HIGH-B AT SHOTS EXCEED NO-WALL LIMITS
AND APPROACH IDEAL-WALL LIMITS

Discharges shown below have:
(from high q,,,, AT shape, and flat-q experiments)

Experimental 3 (with MSE) vs. q,,,,
n=1 unstable with ideal wall

1.8

2.0
qmin

22 24 26 2.8

(EFITO2 —no E, correction)

1.7<x<1.9, ARy, <1cm
Qo — Qmin > 0.1, Qg5 >4.5

n=1 ideal-wall limit locally
minimum near q,;,=1.6-2

— n=1 fast disruptions
— 2/1 modes excited near limit

n=1,2,3 ideal-wall limits
similar in highest B, shots

— B saturation with n=2,3
— n=3 “X-events”

Experimental B, limits are
generally lower at high g,

— High B,'s have broader p
J. Ferron APS RI1.005

— Increased n=2,3 tearing

— n=1 RWM more unstable?
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PROXIMITY TO IDEAL-WALL LIMIT CAN DESTABILIZE TEARING MODES

e Positive pole in A’ near ideal-wall limit can classically destabilize tearing modes
(D. Brennan — Poster NP1.010 DPP-2004 + other papers)

— Kink vs. tearing mode excitation function of heating rate through ideal B-limit
e 2/1 tearing mode often observed at high B, as g,,, = 1.5 from above
e n >1 tearing mode (TM) more commonly observed when g, > 2

Experimental B, (with MSE) vs. .,
0
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Resistive kink-tearing mode investigated with MARS

e Simple slab model of A’ driven by dJ/dr illustrates separation of tearing
and kink marginal stability boundaries with ideal wall.

e In MARS, a similar separation is evident when sufficiently large
resistivity is used, and a resistive kink-tearing mode is excited

e Separation of marginal B values increases with resistivity, as expected
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FIG. 1. The A’ solution from a simple slab model as a function of current (O)
gradient. Varying the location of the conducting wall changes not only the n E |
ideal limit, but also the tearing stability index. Xpt value
for DIII-D

Brennan, Phys. Plasmas, Vol.10, No.5, May 2003
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Rotation can enhance resistive-kink-tearing mode growth

O e e L s R ey
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* Need to test role of rotational-shear on stability

— Flat Q, profile not destabilizing to plasma mode in similar RWM
studies with stronger dissipation.
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SHEARED ROTATION PREDICTED TO REDUCE =1 IDEAL-WALL LIMIT

e 10% reduction in n=1 ideal-wall limit near q,,,,=1.6 typical

MARS n=1y vs. BN and rotation for q,,, = 1.6 f
100 ' — ) . n=1 unstable
-,/ 9, (Expt) Sound wave | ’ with ideal wall
30_— g_?go&) damping, k,=0.28
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e Possible explanation for observed offset in limits?
— Strong dissipation enhances destabilization effect
e Experimental uncertainty in f and pB-limit also ~ 5-10%
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Dissipation predicted to dominate n in high-Q, conditions

» Plasma-mode y insensitive to n for sound However, dissipation may be
wave damping & Q, required to stabilize RWM destabilizing below ideal-wall limit

n=1 plasma mode, q,,, = 1.8 n=1 plasma mode, q,,, = 1.8
H L L L R L L L L L L L
M 100'00? n=0
100[ i i
L ‘ 10.005*
Expt. n profile i SW Damping -
Resistivity i Strengthlo(KII |
Multiplier
Tlwall YTwan 1.00¢ 0.39 E
100 i |
1.0 0.10: 0.23 E
)y, S dameing 67028 001 .
3.0 3.2 3.4 3.6 3.8 4.0 4.2 3.0 . . . 3.8 4.0 4.2

=» Ideal plasma treatment of plasma-mode
stabilization valid for DIlI-D S=t/t, values?

Do these results change if the (perpendicular) kinetic damping model is used?
Need to understand interplay between dissipation and n at mode-rational surfaces...
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Omin >2 MAY BE MORE UNSTABLE TO 7=1 RESISTIVE WALL MODES

MARS = Qd)‘crit ~ 2 X Q(I)-expt .
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n=1 RWM stability depends strongly on damping model

Critical rotation frequency differs by factor of 4 for q,,,, = 2.2
Kinetic damping model 2 RWM most unstable near ideal-wall limit
Umin = 2.2
MARS SW damplng = Q¢ crit ~ 2 X Q Kinetic damplng = Q¢ crit. ~ 0.5-0.6 x Oyt
0fa 0,Expt) ] 100070 Expt) FTTT
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B P

 Predict n=1 RWM instability near B = 3.5 for expt. rotation for q,,;, > 2
only for the sound-wave damping model.
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BOTH MARS DAMPING MODELS PREDICT INCREASED Q2 q;r WHEN @y >2

e Resonances at g=2 surface dominate collisionless damping when g, < 2
MARS n=1 RWM critical ©,(q=3) / w,

0.07F .

E < Sound wave (SW) damping model
0.06 - predicts much larger Q, . than
0.05 - kinetic damping model for g, > 2
0.04 | DIII-D n=1 RWM critical-Q, studies:
0.033 B fromSheo)t(E)lfgt‘:m::z — Usually, Umin = 15-138

— Qy i(d=3)/m, = 1% In experiment

0.02 — SW damping over-predicts Q, .

. s
ﬁ g — Kinetic damping under-predicts
Tk A (La Haye, to be published in NF)
0.00E s s s s | s s s s I s s s L
1.0 15 2.0 2.5

Ao e Actual Q ., bounded by these?

—— o AT shape experiment used g, < 2
— Experiment approached ideal-wall limits using C-coil EF correction only

— Qpexpt > Qycrie from both damping models - consistent with experiment
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Plasma n can affect rotational stabilization of RWM

 Usual RWM stabilization via
rotation observed forn =0
with strong dissipation

NSTX Shot 109070 at t=428ms
MARS n= 1 mode yvs BN and Q
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Some evidence for saturated modes on NSTX

« Broad J profile (early H-mode) excites long-lived n=1 mode
— SXR consistent with m=5 edge island

» Mirnovs show m > 4 on similar shots
» |[s this tearing of the plasma mode above the no-wall limit?
— Result of low edge n in NSTX?

Shot 112600 wB(w) spectrum [N - -
for tormdaf mode number 1
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Summary

o Systematic stability studies find sustained AT
operation with B, > 4 difficult for typical profiles

— Proximity to ideal-wall limit can excite n=1-3 TMs
* This effect can be modeled in MARS by including resistivity
 Sheared rotation also destabilizing near ideal-wall limit

« Collisionless/resonant dissipation models for RWM
sensitive to presence of g=2 surface in plasma
— MARS predicts n=1 RWM more unstable when q,,;,, > 2

* |nitial calculations for NSTX find plasma n can
destabilize the RWM even with dissipation and
— Dependence on S, profiles, etc. not yet clear
— May result in weakly unstable modes that tear and saturate
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