Resistive plasma and RWM modeling for AT & ST plasmas using MARS

J. Menard, PPPL

9th Workshop on MHD Stability and Control Princeton Plasma Physics Laboratory November 21-23, 2004

J. Menard - Workshop on MHD stability & control - Nov 21-23, 2004

Motivation

- Understand β -limiting modes in DIII-D AT
 - Tearing modes often observed near ideal-wall limits
 - No obvious precursor in many cases → classically unstable?
 - n=1 RWM also sometimes observed despite rotation values that typically stabilize mode
- Try to use MARS code to interpret observations Attempt to understand interplay between:
 - Ideal wall limits and tearing activity
 - Plasma resistivity
 - Plasma rotation
 - RWM dissipation mechanisms
 - Wall resistivity
- Initial applications to NSTX

GOALS:

- Understand expt. instabilities
- Find stable J profile at $\beta_N \ge 4$
- Investigate non-ideal effects
 - Tearing stability
 - RWM stability

METHODOLOGY:

- Profiles from high $\beta_N = 4.1$ shots of AT shape expt.
 - $-\beta_N > 4$ achieved transiently
 - High- κ DND (like modification)
- Vary J profile to scan q_{min}

— Weakly reversed,
$$q_0 - q_{min} < 1$$

$$- \rho_{qmin} = 0.4 - 0.5$$

 $- q_{95} = 5 - 5.5$

 $-q_{99.7}$ fixed at 7.2

FIND $\beta_N > 4$ IDEALLY STABLE TO n = 1-3 ONLY FOR $q_{min} = 1.5-1.9$

Computed n=1,2,3 kink limits with and without DIII-D vessel (CHEASE + DCON)

J. Menard - Workshop on MHD stability & control – Nov 21-23, 2004

$\begin{array}{l} \text{HIGH-}\beta_{\text{N}} \text{ AT SHOTS EXCEED NO-WALL LIMITS} \\ \text{AND APPROACH IDEAL-WALL LIMITS} \end{array}$

J. Menard - Workshop on MHD stability & control – Nov 21-23, 2004

PROXIMITY TO IDEAL-WALL LIMIT CAN DESTABILIZE TEARING MODES

- Positive pole in Δ' near ideal-wall limit can classically destabilize tearing modes (D. Brennan Poster NP1.010 DPP-2004 + other papers)
 - Kink vs. tearing mode excitation function of heating rate through ideal β -limit
- 2/1 tearing mode often observed at high β_N as $q_{min} \rightarrow 1.5$ from above
- n > 1 tearing mode (TM) more commonly observed when $q_{min} > 2$

Resistive kink-tearing mode investigated with MARS

- Simple slab model of ∆' driven by dJ/dr illustrates separation of tearing and kink marginal stability boundaries with ideal wall.
- In MARS, a similar separation is evident when sufficiently large resistivity is used, and a resistive kink-tearing mode is excited
 - Separation of marginal β_N values increases with resistivity, as expected

Brennan, Phys. Plasmas, Vol.10, No.5, May 2003

J. Menard - Workshop on MHD stability & control - Nov 21-23, 2004

Rotation can enhance resistive-kink-tearing mode growth

- Need to test role of rotational-shear on stability
 - Flat Ω_{ϕ} profile not destabilizing to plasma mode in similar RWM studies with stronger dissipation.

SHEARED ROTATION PREDICTED TO REDUCE n=1 IDEAL-WALL LIMIT

- Possible explanation for observed offset in limits?
 Strong dissipation enhances destabilization effect
- Experimental uncertainty in β and β -limit also \approx 5–10%

Dissipation predicted to dominate η in high- Ω_{ϕ} conditions

→ Ideal plasma treatment of plasma-mode stabilization valid for DIII-D S= τ_R/τ_A values?

Do these results change if the (perpendicular) kinetic damping model is used? Need to understand interplay between dissipation and η at mode-rational surfaces...

J. Menard - Workshop on MHD stability & control - Nov 21-23, 2004

q_{min} >2 MAY BE MORE UNSTABLE TO n=1 RESISTIVE WALL MODES

n=1 RWM stability depends strongly on damping model

- Critical rotation frequency differs by factor of 4 for $q_{min} = 2.2$
- Kinetic damping model → RWM most unstable near ideal-wall limit

 Predict n=1 RWM instability near β_N = 3.5 for expt. rotation for q_{min} > 2 only for the sound-wave damping model.

J. Menard - Workshop on MHD stability & control – Nov 21-23, 2004

BOTH MARS DAMPING MODELS PREDICT INCREASED $\Omega_{\phi-CRIT}$ WHEN q_{min} >2

Resonances at q=2 surface dominate collisionless damping when $q_{min} < 2$ MARS n=1 RWM critical $\Omega_{\phi}(q=3) / \omega_{\Delta}$ 0.07 Sound wave (SW) damping model predicts much larger $\Omega_{\phi-crit}$ than 0.06 kinetic damping model for $q_{min} > 2$ 0.05 0.04 DIII–D n=1 RWM critical- Ω_{ϕ} studies: $\Omega_{\phi}(\psi)$ from experiment — Usually, $q_{min} = 1.5 - 1.8$ 0.03 Shot 113850, t=2.8s - $\Omega_{\phi-crit}(q=3)/\omega_A \approx 1\%$ in experiment - SW damping over-predicts $\Omega_{\phi-crit}$ 0.02 - Kinetic damping under-predicts 0.01 (La Haye, to be published in NF) 0.00 1.5 2.5 1.0 2.0 Actual $\Omega_{\phi-crit}$ bounded by these? **q**_{min}

AT shape experiment used q_{min} < 2

 Experiment approached ideal-wall limits using C-coil EF correction only

 $-\Omega_{\phi-expt} > \Omega_{\phi-crit}$ from both damping models - consistent with experiment

Plasma η can enhance instability of Ω_{ϕ} =0 RWM

10000.0

1000.0

100.0

10.0

1.0

 $\gamma \, \tau_{wall}$

τ_{Wall} = 5.0x10⁴ τ_Δ

 $τ_{Wall}$ = 1.0x10⁴ τ_A $τ_{Wall}$ = 2.0x10³ τ_A

 $\Omega_{\phi} = \mathbf{0}$

Ideal plasma

Compute γ with varied τ_{WALL}

- Ideal plasma
 - $\gamma \tau_{WALL} \approx constant$
 - $\gamma \approx \gamma_{\text{Alfven}}$ above ideal-wall limit
- Resistive plasma:
 - η increases $\gamma \tau_{WALL}$ for large τ_{WALL}
 - Factor of 2 in γ near C_{β} = 0.5
 - Apparent lowering of no-wall limit

J. Menard - Workshop on MHD stability & control - Nov 21-23, 2004

NSTX

NSTX Shot 109070 at t=522ms

MARS n=1 mode γ vs. β_N at $\Omega_{\phi}/\Omega_{\phi}$ (Expt) = 0.00

 $\kappa_{\parallel} = 0.28$

For this case, the RWM is not

Saturated RWM, TM, or n-kink?

- Mode has $\omega \tau_{WALL} \approx 40$ (f = few kHz)

6.0

stabilized when $\eta = \eta_{FXPT}$

- Usual RWM stabilization via rotation observed for $\eta = 0$ with strong dissipation
- NSTX Shot 109070 at t=428ms MARS n=1 mode γ vs. β_N and Ω_{ϕ} 20 $\Omega_{\phi}/\Omega_{\phi}$ (Expt) 6 $\Omega_{\bullet}/\Omega_{\bullet}$ (Expt) $\kappa_{||} = 0.56$ 0.0(+)0.0(+)SW["]damping 15 0.10 0.100.20 0.20 Δ 0.30 0.30 0 40 0.40 10 0.50 0.60 $\gamma \, \tau_{\text{wall}}$ 0.60 0.70 $\gamma \, \tau_{wall}$ 2 0.80 0.90 5 0 0 -2 <- DCON no-wall limit <- DCON no-wall limit Ideal-wall limit -> Ideal-wall limit -> -5 4.0 5.0 4.0 5.0 5.5 4.5 5.5 6.0 4.5 β_N β_N
 - J. Menard Workshop on MHD stability & control Nov 21-23, 2004

Some evidence for saturated modes on NSTX

- Broad J profile (early H-mode) excites long-lived n=1 mode
 - SXR consistent with m=5 edge island
 - Mirnovs show m > 4 on similar shots •
- Is this tearing of the plasma mode above the no-wall limit?
 - Result of low edge η in NSTX?

J. Menard - Workshop on MHD stability & control - Nov 21-23, 2004

Summary

- Systematic stability studies find sustained AT operation with $\beta_N > 4$ difficult for typical profiles
 - Proximity to ideal-wall limit can excite n=1-3 TMs
 - This effect can be modeled in MARS by including resistivity
 - Sheared rotation also destabilizing near ideal-wall limit
- Collisionless/resonant dissipation models for RWM sensitive to presence of q=2 surface in plasma
 - MARS predicts n=1 RWM more unstable when $q_{min} > 2$
- Initial calculations for NSTX find plasma η can destabilize the RWM even with dissipation and Ω_{ϕ}
 - Dependence on S, profiles, etc. not yet clear
 - May result in weakly unstable modes that tear and saturate