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Magnetic Energy Dissipation in the Universe

• The conversion of magnetic energy to heat and high speed flows underlies
many important phenomena in nature
– solar and stellar flares

– magnetospheric substorms

– disruptions in laboratory fusion experiments

• More generally understanding how magnetic energy is dissipated is
essential to model the generation and dissipation of magnetic field energy
in astrophysical systems
– accretion disks

– stellar dynamos

– supernova shocks

• Known systems are characterized by a slow buildup of magnetic energy
and fast release
– trigger?

– mechanism for fast release?

• Production of energetic particles



Magnetic Free Energy

• A reversed magnetic field is a source of free energy
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•Can imagine B simply self-annihilating
•What happens in a plasma? 



Yohkoh Images of the Sun

• Tsuneda ‘96

Soft x-rays

Normal B at
photosphere

•Active regions occur where B is large and reverses direction



Resistive Diffusion

• Diffusion of
magnetic flux
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Characteristic Diffusion Times

                           Resistive Time

Laboratory Tokamaks            1 - 10 sec                            100 µsec

Solar Flares                          ~  104 years                            ~ 20 min

                                             ~                                                30 min

Observed Energy
Release Time

×Magnetospheric
Substorms



Energy Release from Squashed Bubble

• Magnetic field lines want to become round
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Energy Release (cont.)

• Evaluate initial and final magnetic energies
– use conservation law for ideal motion

• magnetic flux conserved

• area for nearly incompressible motion
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•Most of the magnetic energy is released



Flow Generation

• Released magnetic energy is converted into plasma flow
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•Alfven time τA is much shorter than observed energy release time
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Magnetic Reconnection

• Strong observational support for this general picture both
from astrophysical and laboratory data



Sawteeth

• Internal disruption events
were first observed in the
soft x-ray data in the ST
tokamak (von Goeler, et
al., 1974)



Kadomtsev Reconnection Model

• Transformation to a twisted  coordinate system reveals
classical reversal in the magnetic field which drives
reconnection (Kadomtsev, 1975)
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Simulation of Sawtooth
Reconnection

• Based on the
magnetohydrodynamic
(MHD) equations (Park, et
al., 1984)



Expulsion of Core Temperature

• Measurements of the core electron temperature in the
TFTR tokamak documented the loss of core energy during
the “sawtooth crash” (Yamada, et al., 1994)

• Observations consistent with Kadomtsev model



Resistive MHD Description

• Formation of macroscopic Sweet-Parker layer

•Slow reconnection
•sensitive to resistivity
•macroscopic nozzle

V ~  (∆∆∆∆ /L) CA  ~  (ττττA/ττττr)1/2 CA  <<  CA



Sawtooth Crash Time

• Observations of the
sawtooth crash on
TFTR, JET and JT-60
tokamaks let to a major
surprise
– crash time was actually

shorter than in the earlier
lower temperature
machines

• inconsistent with
resistive MHD model
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Failure of the MHD Model

• Reconnection rates too slow to explain observations
– solar flares

– sawtooth crash

– magnetospheric substorms

• Some form of anomalous resistivity is often invoked to explain
discrepancies
– strong electron-ion streaming near x-line drives turbulence and associated

enhanced electron-ion drag

– no convincing theory of anomalous resistivity

• Non-MHD physics at the small spatial scales where the frozen-in
condition is broken produces fast reconnection consistent with
observations



Role of Dispersive Waves

• Coupling to dispersive waves at small scale is the key to
understanding fast magnetic reconnection
– rate of reconnection independent of the mechanism which breaks

the frozen-in condition

– fast reconnection even for large systems
• no macroscopic nozzle



Generalized Ohm’s Law

• Electron equation of motion

•MHD valid at large scales
•Below c/ωpi electron and ion motion decouple

•electrons frozen-in
•Electron frozen-in condition broken below c/ωpe
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Kinetic Reconnection

• Ion motion decouples from that of the electrons at a
distance          from the x-line

– ion outflow width
• electron current layer and outflow width

c/ωpi

c/ωpi

c/ωpe



Multiscale Structure of Dissipation Region

• Large scale hybrid (particle ions
and fluid electrons) simulation
(Shay et al., 1999)
– Clear separation of ion and

electron scales
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MRX Reconnection Experiment



Scaling of width of current layer

• Width of current layer scales with c/ωpi



GEM Reconnection Challenge

• National collaboration to explore reconnection with a
variety of codes (Birn, et al., 2001)
–  MHD, two-fluid, hybrid, full-particle

• nonlinear tearing mode in a 1-D Harris current sheet

                             Bx = B0 tanh(z/w)
                              w = 0.5 c/ωpi



GEM tearing mode
evolution

• Full particle simulation
(Hesse,GSFC)



Rates of Magnetic Reconnection

• Rate of reconnection is the slope of the Ψ versus t curve

• all models which include the Hall term in Ohm’s law yield essentially
identical rates of reconnection
– Why?

• MHD reconnection is too slow by orders of magnitude

• MHD is not adequate to model magnetic reconnection

– this is a general conclusion

Birn, et al., 2001



Whistler Dispersion

• Quadratic dispersion character
                                    ωωωω ~ k2

                                                  Vp ~ k
– smaller scales have higher velocities

• Key to understanding kinetic reconnection
– insensitivity of rate of reconnection to the mechanism which

breaks the frozen-in condition

– absence of macroscopic nozzle



Sensitivity of reconnection to dissipation
mechanism

• Assume frozen-in condition broken at scale   w

•  plasma flux from x-line    ~ vw
-  independent of scale   w
-  plasma flux independent of mechanism which breaks
frozen-in condition



Whistler signature

• Magnetic field from particle simulation (Pritchett, UCLA)

•Self generated out-of-plane field is whistler signature



Observational Support for Whistler Wave
Role in Reconnection

• Recent encounter
of Wind
spacecraft with
reconnection site
in the Earth’s
magnetotail
(Oeierset, et al.,
2001)
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Magnetic
Field Data
from Wind

• Out-of-plane
magnetic fields
seen as expected
from standing
whistler
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Important Unresolved Issues

• Turbulence and anomalous resistivity
– Is the widely invoked “anomalous resistivity” a reality?

– Strong currents driven near the x-line drive turbulence
• observed during sawtooth crash and at the Earth’s magnetopause

• scattering of particles by intense electric fields produce an
effective resistivity

• Production  of energetic particles
– Why are so many energetic electrons produced?

• Particle scattering produces strong heating



Observations of turbulence during the sawteeth

• Turbulence measured near the x-
line during the sawtooth crash
– microwave scattering on TFTR

(Nazikian, et al., 1991)

• What is the drive mechanism for
the turbulence?

• Does the turbulence cause
anomalous resistivity

• Requires exploration of
reconnection in 3-D geometry



Observational Challenges (heating and
energetic particle production)

• What controls electron and ion heating?
– Ion heating observed during reconnection in the Reversed Field Pinch

and more recently in the NSTX Spherical Torus.

• Strong ion heating seen even in the 2-D reconnection models

• Characteristic reconnection flows exceed ion thermal speeds
– a variety of mechanisms for heating ions

– The production of large numbers of energetic electrons are seen during
solar flares and in other astrophysical systems

• heating by waves (Miller, et al., 1999)?

• Remains poorly understood



Turbulence and particle energization in 3-D
Magnetic Reconnection

• Large electron
streaming near the x-
line
– drives strong turbulence

• Full particle simulation
on a 512 x 256 x 128
grid with 670 million
particles
– new computational tools

enabling exploration of
new physics
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Development of electron holes and particle
scattering

• Electron beams generate
two-stream instability

– nonlinear evolution
into electron holes

• localized regions of
intense anti-parallel
electric field

– strong electron
scattering
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• Enhanced resistivity
has a complex spatial
and temporal structure
with positive and
negative values
– not expected

“Anomalous resistivity” due to scattering by
parallel electric fields
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Observational evidence for electron holes
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Polar satellite observations at the magnetopause  (Cattell, et al., 2002)

Cut through the computational domain
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Computational Challenge

• Magnetic reconnection is intrinsically a multi-space and multi-time
scale problem
– macroscales must be included to correctly describe stability in fusion as

well as space/astrophysical plasma

– coupling to dispersive waves essential to describe reconnection in real
physical systems

– sharp boundary layers which develop become turbulent
• high frequency and short-scale lengths are a generic consequence

• The clear separation of micro-scale and macro-scale phenomena does
not exist

• Essential to develop the computational tools to treat these multi-scale
problems



Conclusions

• Fast reconnection depends critically on the coupling to
dispersive waves at small scales
– rate independent of the mechanism which breaks the frozen-in

condition

– inflow velocities rate independent of all kinetic scales  ~ 0.1 CA

• The role of turbulence at self-generated boundary layers and
the role of anomalous resistivity is not well understood.
– New observational and computational evidence for the self-generation

of electron holes and associated anomalous resistivity
• An exciting new development facilitated by the synergistic interaction of

experiment and theory

• Mechanism for electron heating in laboratory and astrophysical systems?

• Can energetic electrons be measured in laboratory experiments?



Conclusions (cont.)

• Trigger for the onset of reconnection remains poorly
understood and may not be generic.

• Reconnection during the sawtooth crash sometimes remains
incomplete in spite of the complete expulsion of the hot core
plasma. Why?
– Role of secondary instabilities?

• Strong coupling between theory/computation and laboratory
and astrophysical observations essential to confront
theoretical predictions and to resolve outstanding questions.

• Exploring magnetic reconnection is intrinsically a multi-
space and time scale computational problem
– development of boundary layers and secondary instabilities link

macro and micro scales


