
Results of JT-60 and JFT-2M
in Collaboration with PPPL

H. H. NinomiyaNinomiya
JAERIJAERI

Presented at A Celebration of
High Temperature Plasma Physics
50 Years of Scientific Achievement

Princeton Plasma Physics Laboratory

June 5-7, 2002





1. Results of JT-601. Results of JT-60
      •• Transport barrier and progress in plasma Transport barrier and progress in plasma
      performance      performance
      •• Sustainement Sustainement  of high integrated performance of high integrated performance
      ••  Toroidal AlfvToroidal Alfv één n Eigen Eigen modemode

2. Results of JFT-2M2. Results of JFT-2M

3. Theoretical Research3. Theoretical Research

4. Future Direction of JT-604. Future Direction of JT-60

5. Summary5. Summary

OutlineOutline



1956
1961

1969
1972

1975

1985
1988
1992

2001

JAERI established

Fusion research started

JFT-1
JFT-2

Design & construction of JT-60 started

Naka Establishment established
Operation of JT-60 started

ITER CDA started

ITER EDA started

ITER CTA started

1986: IEA Co-
operation among the
Three Large Tokamak
Facilities  (JET, JT-60
and TFTR) started

Operation of JFT-2M started
1983

Annals of Fusion Research in JAERIAnnals of Fusion Research in JAERI

Collaboration
enhanced



1. Results of JT-601. Results of JT-60



1.1. Original MissionOriginal Mission
     Achievement of equivalent break-even condition     Achievement of equivalent break-even condition

2. New Mission since 19912. New Mission since 1991
     to establish scientific and technological basis of ITER     to establish scientific and technological basis of ITER

and future DEMO reactorand future DEMO reactor

Concept improvement and scientific basis establishmentConcept improvement and scientific basis establishment

Physics R&DPhysics R&D

JT-60 ITER DEMO

Long-burnLong-burn
IntegrationIntegration

of  fusion  tech.of  fusion  tech.
Break-evenBreak-even

Physics R&DPhysics R&D
ElectricityElectricity
GenerationGeneration

Mission of JT-60Mission of JT-60



Transport barrier and progressTransport barrier and progress

in plasma performancein plasma performance



Discovery of Internal Transport BarrierDiscovery of Internal Transport Barrier

Y. Koide, et al., PRL 72 (1994) 3662.
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High- ββββp mode 

Formation of ion ITB

T. Fujita, et al., PRL 78 (1997) 2377

Reversed Shear mode

Formation of electron ITB



•  Collaboration on High- ββββp Plasma Research with PPPL started in
1993, which was motivated from the results of high- ββββp plasmas
in JT-60U presented for IAEA conference in 1992

•  A joint paper has been presented by Dr. H. Park for the 1994
IAEA conference at Seville.

•  Significantly improved neutron rate
and energy confident have been
produced from two different regimes
(TFTR supershot and JT-60U high- ββββp
plasmas) in considerably different
machines.

•  Common scalings for the DD neutron
rate and stored energy are obtained
so that the both regimes are charac-
terized by heating power, fueling
peaking parameter and plasma
volume.

Neutron rate scaling for TFTR
supershot and JT-60U high- ββββp mode

Finding of CommonFinding of Common  Scalings Scalings  for TFTR for TFTR
SupershotSupershot  and JT-60U High- and JT-60U High- ββpp Plasmas Plasmas



Progress in JT-60 PerformanceProgress in JT-60 Performance
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" In particular, the TFTR group in the PPPL has remotely partici-
pated in this campaign and made the TRANSP code analysis for
cross-validation. " ( S. Ishida et al., PRL 79 (1997) 3917 )

Remote participation in the campaign

Result from TRANSP code
analysis for #27969 of JT-60U
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Significant Reduction of Thermal Diffusivities
and Increase in Er Shear in ITB Region
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Reversed shear: I p=1.5 MA, B t=3.5 T

• Internal transport barrier makes:
   -  χχχχ i, χχχχe reduced  χχχχNC level
   -  Er shear  drastically increased

• ExB shearing rate ωωωωExB

  comparable to  linear growth 
  rate γγγγL of microinstabilities

(FULL code, PPPL)
• suggested  turbulence 
  suppression  in ITB region

S. Shirai, et al., Nucl. Fusion, 39 (1999) 1713.



PPPL/JAERI Reflectometer Collaboration for Continuous
Correlation Measurements in Transport Barriers on JT-60U

JT-60U Vacuum 
Vessel

Microwave 
sources

Mirror System: GA
Corrugated Waveguide 

& Shield Box

• microwaves reflect from density fluctuations near a cutoff

• Range: 105-140 GHz measures up to magnetic axis:
• Frequency scanning channel allows a radial correlation scan every 60 ms

• Main element of a reflectometer system

Main collaborators: Drs. R. Nazikian and K. Shinohara



Reflectometer Measurements Indicate a Reduction of the Radial
Correlation Length In the Early Phase of ITB Formation in JT-60U

6.2 s

5.7 s

Radial Displacement [cm]

• Very short correlation lengths 
  inside ITB: close to resolution limit?
• Weak fluctuation change! 

5.11 s

5.23 s

5.28 s5.35 s

• Very long correlation lengths 
  before ITB formation: Lc/ρi>>1 ! 

ITB Density Evolution:
High power NBI: 5.05s

Radial displacement [cm]

JAERI



Advances in Simulation and  Visualization
Create New Opportunities for Enhanced

Theory Experiment Integration
Turbulence simulation in

realistic geometry:
Gyrokinetic and Gyrofluid

codes

Full wave simulation
of reflectometry in

real geometry

+

Major advance in
quantitative

analysis

New possibilities
for  experimental

design

Z. Lin, M. Beer E. Valeo

• PPPL is part of a broad effort to simulate experiment: 
  - MIT (Issue of super resolution with curved wave fronts)
  - LLNL (Interpretation of pulse reflectometry with fluctuations)



Visualization of Wave Intensity Near the Cutoff Layer: Plasma
Curvature and Ripples Revealed in Interference Pattern

• Higher kr produce similar result, measurement at spatial resolution limit

δn/n~0.6%, kr~5:
kr ρi ≥ 0.8-1.0
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Electron ITB Formation with Electron HeatingElectron ITB Formation with Electron Heating

Te~26 keV was achieved in a wide region within ITB
for a reversed shear plasma created with off-axis
LHCD and central ECH
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New observation : New observation : Current HoleCurrent Hole
In extreme situation of the hollow current profile,
we observed a region of J~0,  "Current Hole".
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• The current hole was sustained for ~5 seconds without any global insta-
  bilities until disappearance of  ITB due to the stepdown of  heating power.
• High confinement (HH 98y2<~1.5) and moderate beta ( ββββN<~1.7) were
  obtained, suggesting no necessity of on-axis current in tokamak reactors.

Persistency of Current HolePersistency of Current Hole



SustainementSustainement  of high integrated of high integrated

performanceperformance



Advanced ScenarioAdvanced Scenario

  1. Current drive (CD)  1. Current drive (CD)
              Full non-inductive current driveFull non-inductive current drive
              Bootstrap current fraction; 70-80%Bootstrap current fraction; 70-80%
       CD efficiency; 3-5x10       CD efficiency; 3-5x10 1919A/mA/m 22/W/W

  2. High beta  2. High beta
                ββββββββNN = 3.5 (SSTR) - 5.5 (CREST) = 3.5 (SSTR) - 5.5 (CREST)

  3. Confinement  3. Confinement
              1-1.4 xIPB98-y2 at1-1.4 xIPB98-y2 at  n nee > > n nGG

    4. 4. DivertorDivertor  ; power and particle ; power and particle
              Heat : 90-95% radiationHeat : 90-95% radiation
             Particle: Particle:   ττττττττHeHe*/*/ττττττττEE~5~5

Typical Requirements for ViableTypical Requirements for Viable  Tokamak Tokamak  Reactor Reactor
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NBCD  results areNBCD  results are
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Improvement of Current Drive Performance



Improvement of N-NB Injection DurationImprovement of N-NB Injection Duration
To make the electric field uniform, a piece of Cu plate was
equipped and hence the deflection of the beamlets was corrected.

Collaboration with Dr. L. R. Grisham
L. Grisham, et al, Nucl.Fusion, 41 597 (2001)
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RsultsRsults  of Improvement of Improvement
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Improvement of Integrated PerformanceImprovement of Integrated Performance
under Full Non-inductive CDunder Full Non-inductive CD

Plasma parameters:
   High ββββp H-mode
    ββββN=2.3-2.5 at 4.1T,
    1.8 MA, δδδδ=0.34, q95=4.1

NNB injection:
    5.7 MW at 400 keV

Plasma performance:
    HH98y2=1.3
    nD(0)ττττETi(0) = 3.0 x1020m-3skeV

    Full current drive with I bs/Ip=0.50

Onset of neoclassical tearing mode
  was avoided by reducing the
  pressure gradient at q=1.5 and 2
  surface
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Quasi-steady high-confinement RS plasma with largeQuasi-steady high-confinement RS plasma with large
BS current fraction under full non-inductive CDBS current fraction under full non-inductive CD

T. Fujita, et al., Phys. Rev. Lett. 87 (2001) 85001

Can We Obtain Steady-state J(r) SolutionCan We Obtain Steady-state J(r) Solution
under Good BS Currentunder Good BS Current   Alignment in RS Plasmas?Alignment in RS Plasmas?



How to control "self-sustained and self-organized
autonomous system” where different key factors with
different time scales are tightly coupling  each other.

self-generation
of current

pressure
profile

structure of flow

structure of fluctuation

external 
   control system
�     heating 
�     current
�     momentum

         etc.

spatial gradient of plasma
 (change of gradient)

self-generation 
of current

magnetic field
structure

new equilibrium field

self-generation 
of electric field

"flow"  structure
plasma rotation

  Electrostatic and 
     electromagnetic 

micro-scale fluctuation

Ideal and non-ideal
macro-scale

MHD fluctuation

Re-organization of 
plasma profile and  structure

β
N

ρ
*

ν*τdiff∆t

nonlinear loop

Self-Organization
relaxation and 

cascade in 
wave number space

 Internal 
energy source

Burning
�

Burning Plasma Physics
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AlfvAlfv één n EigenmodesEigenmodes



NOVA-K Code Analysis Leads toNOVA-K Code Analysis Leads to
Identification of NAE in JT-60UIdentification of NAE in JT-60U

NAE modes (450-530 kHz)
were observed for the
first time in JT-60U. G.J. Kramer, et al., PRL 80 (1998) 2594.

Measured mode frequencies
are consistent with NOVA-K
calculation.



Stability of TAE in Stability of TAE in ReveasedReveased  Shear Plasma  Shear Plasma Can Be
Qualitatively Explained by the NOVA-K Code

TAE modes are unstable
with weak ITB in a
reversed shear plasma.

Y. Kusama, et al., Nucl. Fusion,
38 (1998) 1215.

Modes can not peak inside q min  for the
strong ITB case, resulting in weak
fast ion drive.

NOVA-K analysisExperiments
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Frequency Chirping Observed during N-NB
Injection Is Under Analysis at PPPL

N-NB driven modes Analysis of n=1 chirping
mode with HINST code

 One possible candidate of the 
   chirping mode is Resonant TAE
   (R-TAE) excited in a high ββββh
   regime.

 Frequency chirping is
   explained qualitatively due to
   the increase in ββββh.

 More accurate analysis is under
   way with the NOVA-2 code.

N.N. Gorelenkov, et al., Nucl.
Fusion, 40 (2000) 1311.Y. Kusama, et al., Nucl. Fusion, 39 (1999) 1837.
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2. Results of JFT-2M2. Results of JFT-2M
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The Pitch Angle of BD Loss Corresponds to Loss
Cone on the Velocity Space.

• Lost ion probe was installed in 1999 in order to measure the energy
  and the pitch angle of energetic lost ions.
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3. Theoretical Research3. Theoretical Research



Large Scale Simulation Research in NEXT Project

3D toroidal particle  
           turbulent simulation

3D particle-fluid hybrid 
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3D Divertor Simulation 
       of Impurity Dynamics

3D MHD Simulation of 
Jupiter Magnetosphere

3D Simulation of Relativistic 
Runaway Electron  

3D gyro-kinetic 
 Full Particle MHD Simulation

3D MHD Simulation of Compact
Toroid Injection into Tokamak

2D Particle Simulation of High 
Power Laser-Cluster Interaction



Nonlinear Global Gyro-kinetic Simulation of ETG TurbulenceNonlinear Global Gyro-kinetic Simulation of ETG Turbulence

Electron transport barrier is established by the
Zonal Flow through the spatial propagation of
ETG and Kevin-Helmhoultz turbulence.

q-min surface
q-min surface

Linear phase
 (t=2msec)

Saturation phase
 (t=4msec)

Nonlinear phase
 (t=6msec)

Quasi-steady state
 (t=8msec)
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• Application of the code for linear calculations before addressing nonlinear
  simulations
• From comprehensive global analyses over a wide range of an unstable
  toroidal mode number spectrum ( n=0 100), it is found that especially in
  reversed shear tokamaks, properties of the ITG mode are drastically changed
  through ion heating and density peaking processes.



Nonlinear Gyro-kinetic MHD Simulation of ReversedNonlinear Gyro-kinetic MHD Simulation of Reversed
Shear PlasmasShear Plasmas

New mechanism that the reversed q-profile crosses the mode rational surface
"Electron inertia" is essential for reconnection process in high temperature plasma
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Nonlinear Recuced  MHD  Fluid Simulation of Reversed
Shear Plasmas

• New phenomenon of the transition of the mode growth rate from
  resistive time scale to the fast one
• Current point formation within the resistive MHD model

JT-60 exp. 
(S.Takeji et al. IAEA-CN-77/EX7/2)
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Nonlinear MHD Simulation of Advanced
Fueling by Compact-toroid Injection

Mechanism of CT penetration into tokamak target plasma
             through complex magnetic reconnection dynamics
3-D magnetic configuration
 in the CT penetration process.

Experiment of the CT injection in JET-2M

green: Reconnected
magnetic field lines.
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4. Future Direction of JT-604. Future Direction of JT-60



Japanese Government Decided on May 29 toJapanese Government Decided on May 29 to
Propose Propose RokkasyoRokkasyo -mura as ITER Candidate Site-mura as ITER Candidate Site

Rokkasyo-mura
Aomori prefecture

JAERI
Naka

40 km from Misawa Airport
(Misawa: US Air Force base)
80 km from Aomori Airport

•• Misawa

Aomori



Modification of JT-60U (JT-60SC)Modification of JT-60U (JT-60SC)
(JAERI Proposal)(JAERI Proposal)

1) Establishment of high performance steady state
      operation

• High beta plasma control ( ββββN = 3.5 – 5.5)
• Steady state plasma control (f BS=50 – 90%)
• Divertor heat&particle control (f rad 95% ττττHe*/ττττE~5)
• Disruption control (avoidance, mitigation)

2) Plasma applicability test
    of advanced materials

- for practical use of the
         advanced material of low
         activation ferritic steel

Mission
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Superconducting coils Neutral beam 
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Parameters of JT-60SCParameters of JT-60SC
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Steady state 
reactor designs

Steady 
state

Inductive
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JT-60SC

ITER-FEAT

Present
data region

• Sufficiently low (ρρρρ*, νννν*) plasmas close to DEMO                    Rp ~3 m
• Sufficiently longer duration than current diffusion time  ~100 s

modification to a superconducting tokamak, JT-60SC.

• JT-60SC pursues plasma parameters deduced from DEMO
   concepts  using low activation ferritic steel in the vacuum vessel

Pulse length
Max. input power

Plasma current Ip
Toroidal field Bt
Major radius Rp
Minor radius ap
Elongation κ95
Triangularity δ95

15 s
40 MW (10 s)

3 MA
4 T
3.4 m
0.9 m
1.8 (δ95=0.06)
0.4 (κ95=1.33)

JT-60UParameter JT-60SC

100 s
44 MW (10 s)
15 MW (100 s)
4 MA
3.8 T (Rp=2.8 m)
2.8 -3 m (2.8 m*)
0.7-0.9 m (0.85 m*)
≤≤≤≤ 2 (1.8*)
≤≤≤≤ 0.5 (0.35*)

* Nominal

Design is progressed in national wide collaboration
with universities, institutes and industries.



Summary

• JT-60 and JFT-2M will continue to contribute
  to ITER and establish a scientific basis for
  attractive steady-state tokamak reactors.
• Collaboration between PPPL and JAERI has
  created significant results and is increasingly
  of importance in future.


