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Outline

• Overview
• Plasma flux structure
• Plasma Heat Loads (Results from T. Rognlien)
• Design Description (Dan Driemeyer, Boeing)
• Disruption Analysis (Input from C. Kessel)
• Main Issues to be addressed
• Summary
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OverView
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Power Balance Assumed

• Heating Power: 30 MW
• Plasma Gain: 5
• Fusion Power: 150 MW
• Alpha Power: 30 MW
• Total Plasma Heating: 60 MW
• Core Radiation: 10% 6 MW
• Power to SOL: 54 MW (split evenly up/down)
• Radiation in the SOL: 20% 11 MW
• Radiation in divertor:10% 4 MW
• Total Power to the Divertor plates: 40 MW
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Overview

• We assumed a double null divertor because:
– We can use active heat load balancing (active cooling)
– There is some evidence that double null mitigates ELMs
– The active area of the divertor is increased, lower heat 

loads (see Rognlien results)
• The increase from 2 to 2.14m was done without a 

proportional increase in height which meant the distance 
from the x-point to the plates decreased, but the heat is 
spread more.

• The plasma current increased which may make the eddy 
currents worse (see Disruption section)
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Plasma Flux Geometry in FIRE
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Divertor Heat Flux
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UEDGE is a plasma/neutral fluid code

• Features of UEDGE
Physics:
– Multispecies impurities; var. n, u||, Te,i, φ
– Flux-limited kinetic corrections
– Reduced Navier-Stokes neutrals or Monte Carlo 

coupling
– Multi-step ionization and recombination; sputtering
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FIRE is designed for a double-null divertor

Double
null

Single 
null 
variant

• FIRE divertor must 
tolerate 28 MW into the 
SOL (DN)

• For 150 MW fusion 
power, helium must be 
removed at a rate of 
5x1019 particles/sec

• Edge density is set to 
3x1020 m-3

• Unity recycling with PF 
pumping
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UEDGE Modeling Results

• Core-edge temperatures are inconsistent with 
that required for good core confinement

• A single-null FIRE variant has more than 2 times 
the peak heat flux of the double-null

• Neon injection can induce partial detachment
• Helium pumping in the private flux region 

appears adequate
• Peak power scales nearly inversely with density 

and with anomalous diffusion coeff.
• Midplane profiles show scaling with core-edge 

density and transport coefficients
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Power Balance is Sensitive to DN Balance

• UEDGE now treats 
range from single-null to 
double-null

• Double nulls reduce 
peak heat flux, but 
balance is delicate

• ExB flows and currents 
produce asymmetries 

• Code reproduces 
measured DIII-D heat  
flux imbalance

drSEP - distance between two 
separatrices at outer midplane

DIII-D heat-flux asymmetry between
upper & lower divertors - T. Petrie
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A number of uncertainties remain

• Peak heat flux scales inversely with unknown 
anomalous transport coeff.

• Reabsorption of hydrogen radiation at high 
densities & stability of detachment

• Maintaining double-null power balance
• Redeposition/removal of beryllium to/from 

surfaces
• Consistency of pedestal temperature with good 

core confinement
• Size and impact of ELMs
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SOL Heat Loads from UEDGE
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Heat Loads on the Divertor
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Engineering Design of FIRE 
Divertor (Boeing)
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FIRE Divertor Design
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Disruption Cases
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Disruption Modeling with TSC

• Data provided by C. Kessel, PPPL
• Two Scenarios considered:

– Vertical disruption with maximum Ip dot
– Vertical disruption with maximum halo currents

• Current versus time was provided for about 900 
filaments representing the plasma

• This plasma model was input to OPERA to drive a 
transient eddy current calculation

• 1/16th of FIRE was modeled in OPERA
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Disruption Cases from TSC
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Idot in Disruption Cases
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OPERA Model Of FIRE
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OPERA Model of FIRE Sector
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Opera Model of FIRE Divertor
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Induced Currents in IPmax VDE
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Induced Currents in IPmax VDE
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Induced Currents in IPmax VDE
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Induced Currents in IPmax VDE
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Results of OPERA Model

• In some small regions of the new divertor 
components the induced forces are about 2 times 
higher than for the 2 m design.

• On average the induced forces are less than 20% 
higher than for the 2 m design.

• Since the moments and loads on the supports 
depend sensitively on the location of the forces, 
we cannot tell whether the design has adequate 
margin for disruptions.

• The transient nature of the forces must be taken 
into account in detailed design.
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ELM Effects
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Estimate of ELM Heat Loads

• Best understanding of ELM energy losses at 
Snowmass indicated 3.6 MJ in a typical Type I 
ELM

• All of the ELM energy goes to the outer divertor
• The effective area of the outer divertor is 2.4 m2

• The energy deposition is 1.5 MJ/m2

• The melting threshold is between 0.5 and 1.5 
MJ/m2 depending on the ELM duration (0.1 or 1.0 
ms)

• Type I ELMs are a life limiting event for the 
divertor.
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Type II ELMs

• At high density (nped >70% nGR), ELMs losses 
can become purely convective with ∇TELM~0

• Conditions of access vary: high  δ is required 
(possibly q95 >3.5)

• High βp (JT60-U) and proximity to DN (ASDEX-U, 
JT60-U?)

• Type II ELMs in ETB H-modes so far observed for 
pedestal parameters near the Type I-III transition 
(ASDEX-U, and mixed ELM regime in JET and DIII-
D QDB)

• DIII-D Locked Mode coils reduce ELM size without 
affecting confinement

From Saibene, EPS
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High Triangularity Effect on ELMs
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Type II in ASDEX-U: Quasi DN configuration 
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Allowed ELMs on FIRE
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Remaining Open Issues

• The disruption forces on the new design need to 
be compared to the forces in the 2.0 m design. If 
there is a large difference the supports for the 
divertor will have to be refined. (will be done by 
3/30)

• The effect of deposited Be on the performance of 
the W divertor need to be determined (upcoming 
TPE experiments).

• The pumping speed of the new configuration 
needs to be calculated (should be better than the 
old design because there are fewer obstructions.
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Remaining Open Issues

• Analysis of the divertor loads on the vacuum 
vessel needs to be done (local reinforcement may 
be needed).

• Thermal stress analysis for the new design needs 
to be done (heat loads are lower than the old 
design unlikely there is a problem). (Baxi is 
working on this)

• ELM erosion testing should be done (starting 3/31 
at SNL).
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ELM Simulations on W Rods

• EB1200 at SNL has two independent e-guns
• We will use one to apply steady state heat flux 

(FIRE and ITER like) and the other (unscanned) to 
simulate ELMS (up to 1.5 MJ/m2 in <1ms)

• This testing will be conducted at a few Hz and 
result in thousands of ELMS in less than a days 
operation.

• Damage to the W surface will be monitored 
during cycling.
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ITER Overlap

• FIRE peak heat flux is very similar to the ITER 
peak heat flux

• The FIRE duration is long enough to require 
active cooling of the divertor (steady state is 
possible)

• The Be first wall is the ITER choice also (First 
Wall heat loads are similar).

• ITER is considering an all W option and a mixed 
W/Be option because of the continuing problem 
with T retention in C.
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Conclusions

• The divertor design has been updated to the new 
major radius (2.14 m)

• Heat flux to the divertor has been updated using 
UEDGE and the newest edge transport 
parameters.

• Heat flux is reduced because of lower fusion 
power, greater flux spreading, and increased 
transport.

• The divertor operating temperatures are reduced 
and it is not as necessary to use impurity 
radiation to spread out the power.
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Conclusions II

• Two disruption cases are being used to 
determine disruption forces: maximum current 
decay rate and maximum halo currents

• Analysis of disruption induced eddy currents is 
being conducted using the OPERA code.

• Because of the lower heat fluxes the margins for 
ELM heat deposition have been increased.
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