JT-60 Modification Program

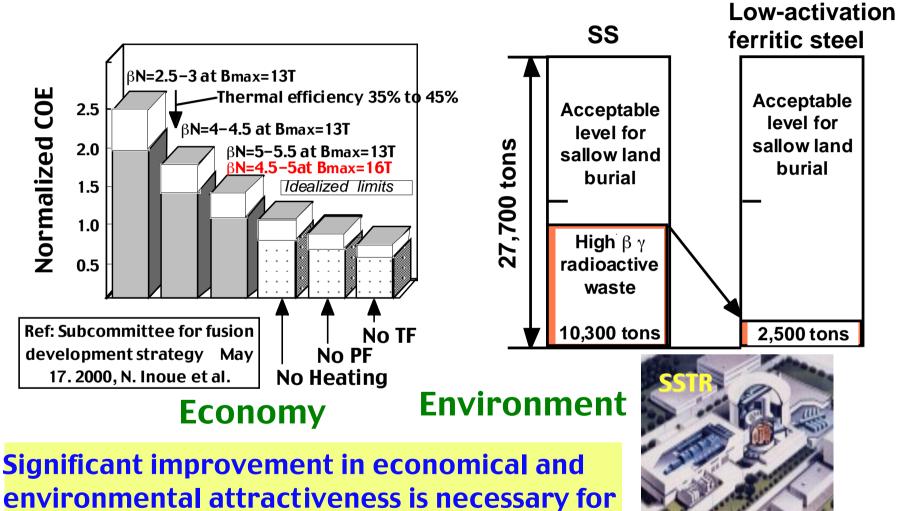
S. Ishida

Japan Atomic Energy Research Institute
Naka Fusion Research Establishment

On behalf of the Technical Committee of JT-60 Modification Program

2002 Fusion Summer Study July 8-19, 2002 Snowmass Village, Colorado

Technical Committee of JT-60 Modification Program


K. Abe¹⁾, A. Ando¹⁾, T. Cho²⁾, T. Fujii, T. Fujita, S. Goto³⁾, K. Hanada⁴⁾, A. Hatayama⁵⁾, T. Hino⁶⁾, H. Horiike³⁾, N. Hosogane, M. Ichimura²⁾, S. Tsuji-Iio⁷⁾, S. Ishida, S. Itoh⁴⁾, Y. Kamada, M. Katsurai⁸⁾, M. Kikuchi, A. Kitsunezaki, A. Kohyama⁹⁾, H. Kubo, M. Kuriyama, M. Matsukawa, M. Matsuoka¹⁰⁾, Y. Miura, Y.M. Miura, N. Miya, T. Mizuuchi⁹⁾, Y. Murakami¹¹⁾, K. Nagasaki⁹⁾, H. Ninomiya, N. Nishino¹²⁾, Y. Ogawa⁸⁾, K. Okano¹³⁾, T. Ozeki, M. Saigusa¹⁴⁾, M. Sakamoto⁴⁾, A. Sakasai, M. Satoh, M.Shimada¹⁵⁾, R. Shimada⁷⁾, M. Shimizu, T. Takagi¹⁾, Y. Takase⁸⁾, S. Takeji, T. Tanabe¹⁶⁾, K. Toi¹⁷⁾, Y. Ueda³⁾, Y. Uesugi¹⁵⁾, K.Ushigusa, M. Wakatani⁹⁾, Y. Yagi¹⁸⁾, K. Yamaguchi, T. Yamamoto, K. Yatsu²⁾, K. Yoshikawa⁹⁾

Japan Atomic Energy Research Institute

- Tohoku University,
- University of Tsukuba,
- Osaka University,
- Kyushu University,
- Keio University,
- Hokkaido University,
- Tokyo Institute of Technology,
- University of Tokyo,
- Kyoto University,
- Mie University,
- Toshiba Corporation Power Systems and Services Company,
- Hiroshima University,
- Central Research Institute of Electric Power Industry,
- Ibaraki University,
- ITER JCT,
- Nagoya University,
- National Institute for Fusion Science.
- National Institute of Advanced Industrial Science and Technology

JT-60SC, JAERI, Snowmass 2002 presentation, Jul/8-19/2002

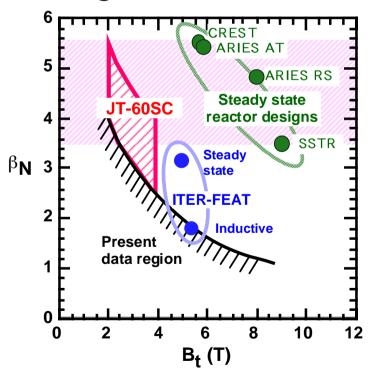
Future Direction of JT-60 Program

a fusion reactor beyond ITER.

Mission and Issues on Modification

- Mission:

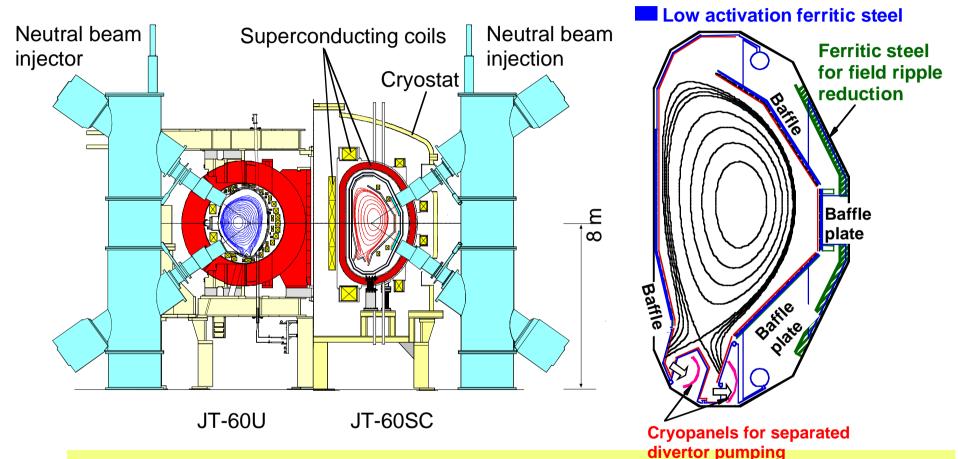
to establish high performance steady state operation and to demonstrate plasma applicability of low activation ferritic steel


- Issues:

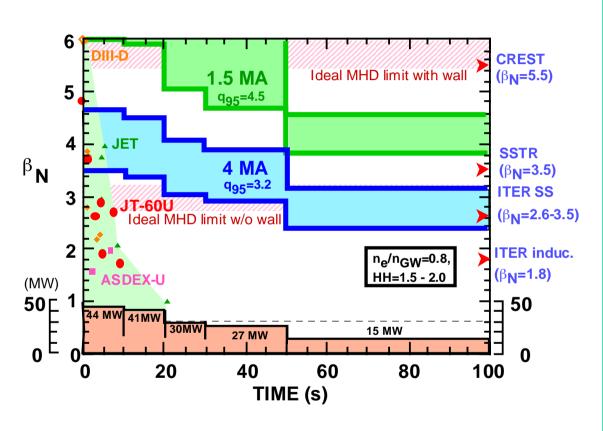
- 1) ESTABLISHMENT OF HIGH PERFORMANCE STEADY STATE OPERATION
 - HIGH BETA PLASMA CONTROL ($\beta_N = 3.5 5.5$)
 - STEADY STATE PLASMA CONTROL (f_{BS}=50 90%)
 - DIVERTOR HEAT&PARTICLE CONTROL (f_{rad}~95%, τ_{He}*/τ_E~5)
 - DISRUPTION CONTROL (avoidance, mitigation)
- 2) PLASMA APPLICABILITY TEST OF ADVANCED MATERIALS
 - for practical use of the advanced material of low activation ferritic steel

Machine design is progressed in nation-wide collaboration with universities, institutes and industries.

Parameters of JT-60SC

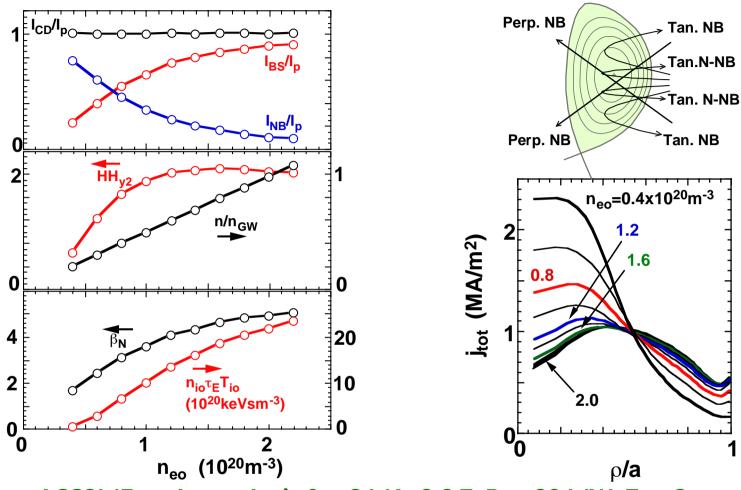

- Sufficiently low (ρ *, ν *) plasmas close to DEMO
- \rightarrow R_n ~3 m
- Sufficiently longer duration than current diffusion time → ~100 s Modification to a superconducting tokamak, JT-60SC.
- JT-60SC pursues plasma parameters deduced from DEMO concepts using low activation ferritic steel in the vacuum vessel.

Parameter	JT-60U	JT-60SC
Pulse length	15 s	100 s
Max. input power	40 MW (10 s)	44 MW (10 s)
		15 MW (100 s)
Plasma current Ip	3 MA	4 MA
Toroidal field B _t	4 T	$3.8 \text{ T (R}_p=2.8 \text{ m)}$
Major radius R _p	3.4 m	2.8 -3 m (2.8 m*)
Minor radius ap	0.9 m	0.7-0.9 m (0.85 m*)
Elongation κ_{95}	1.8 (δ_{95} =0.06)	≤ 2 (1.8*)
Triangularity δ_{95}	$0.4 (\kappa_{95}=1.33)$	≤ 0.5 (0.35*)


* Nominal

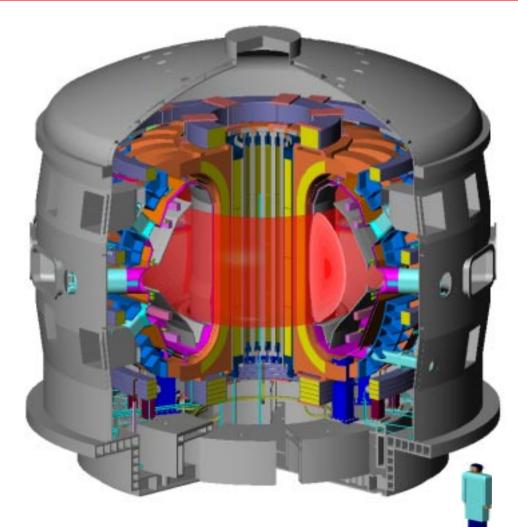
Modification to Superconducting Tokamak

To be modified with maximum utilization of the present facilities such as torus building, heating systems and power supplies


High Beta Plasma Control

Attainable β_N in JT-60SC for long-pulse and high-power heating capabilities.

High Performance Full Current Drive



ACCOME code analysis for 3 MA, 3.8 T, P_{NB} =30 MW, Z_{eff} =2

• Capability of full current drive of a plasma with $I_{hs}/I_n>0.8$, $\beta_N>4$ and $n\tau_E T\sim 1\times 10^{20}$ keVsm⁻³ for HH ~ 2 at $n/n_{GW}>0.8$

JT-60SC, JAERI, Snowmass 2002 presentation, Jul/8-19/2002

Bird's Eye View of JT-60SC

JT-60SC enclosed in a cryostat with a diameter of 12 m.

Superconducting coils

Toroidal field coils

Number 18

B_{max} 7.4 T

Conductor Nb₃Al

Total energy 1.7 GJ

Weight 23.5 tons/coil

Center solenoid

Number 4

B_{max} 7.4 T Conductor Nb₃Sn Weight 41 tons

Weight 41 ton

Equilibrium field coils

Number 6 (div. coil)

B_{max} 5 T (7.4 T)

Conductor NbTi (Nb₃Sn)

Max. diameter 10.6 m

Summary

- JT-60 modification to a fully superconducting tokamak (JT-60SC) is being planned under nation-wide collaboration with universities, institutes and industries.
- The objectives are to realize high performance steady state operation and to demonstrate plasma applicability of ferritic steel in reactor-relevant plasma regimes of a break-even class.
- Basic design has been completed and detailed design is under way.
- Now under discussion at governmental committees.