JT-60 Modification Program #### S. Ishida Japan Atomic Energy Research Institute Naka Fusion Research Establishment On behalf of the Technical Committee of JT-60 Modification Program 2002 Fusion Summer Study July 8-19, 2002 Snowmass Village, Colorado ### **Technical Committee of JT-60 Modification Program** K. Abe¹⁾, A. Ando¹⁾, T. Cho²⁾, T. Fujii, T. Fujita, S. Goto³⁾, K. Hanada⁴⁾, A. Hatayama⁵⁾, T. Hino⁶⁾, H. Horiike³⁾, N. Hosogane, M. Ichimura²⁾, S. Tsuji-Iio⁷⁾, S. Ishida, S. Itoh⁴⁾, Y. Kamada, M. Katsurai⁸⁾, M. Kikuchi, A. Kitsunezaki, A. Kohyama⁹⁾, H. Kubo, M. Kuriyama, M. Matsukawa, M. Matsuoka¹⁰⁾, Y. Miura, Y.M. Miura, N. Miya, T. Mizuuchi⁹⁾, Y. Murakami¹¹⁾, K. Nagasaki⁹⁾, H. Ninomiya, N. Nishino¹²⁾, Y. Ogawa⁸⁾, K. Okano¹³⁾, T. Ozeki, M. Saigusa¹⁴⁾, M. Sakamoto⁴⁾, A. Sakasai, M. Satoh, M.Shimada¹⁵⁾, R. Shimada⁷⁾, M. Shimizu, T. Takagi¹⁾, Y. Takase⁸⁾, S. Takeji, T. Tanabe¹⁶⁾, K. Toi¹⁷⁾, Y. Ueda³⁾, Y. Uesugi¹⁵⁾, K.Ushigusa, M. Wakatani⁹⁾, Y. Yagi¹⁸⁾, K. Yamaguchi, T. Yamamoto, K. Yatsu²⁾, K. Yoshikawa⁹⁾ #### Japan Atomic Energy Research Institute - Tohoku University, - University of Tsukuba, - Osaka University, - Kyushu University, - Keio University, - Hokkaido University, - Tokyo Institute of Technology, - University of Tokyo, - Kyoto University, - Mie University, - Toshiba Corporation Power Systems and Services Company, - Hiroshima University, - Central Research Institute of Electric Power Industry, - Ibaraki University, - ITER JCT, - Nagoya University, - National Institute for Fusion Science. - National Institute of Advanced Industrial Science and Technology JT-60SC, JAERI, Snowmass 2002 presentation, Jul/8-19/2002 ## **Future Direction of JT-60 Program** a fusion reactor beyond ITER. ### Mission and Issues on Modification ### - Mission: to establish high performance steady state operation and to demonstrate plasma applicability of low activation ferritic steel ### - Issues: - 1) ESTABLISHMENT OF HIGH PERFORMANCE STEADY STATE OPERATION - HIGH BETA PLASMA CONTROL ($\beta_N = 3.5 5.5$) - STEADY STATE PLASMA CONTROL (f_{BS}=50 90%) - DIVERTOR HEAT&PARTICLE CONTROL (f_{rad}~95%, τ_{He}*/τ_E~5) - DISRUPTION CONTROL (avoidance, mitigation) - 2) PLASMA APPLICABILITY TEST OF ADVANCED MATERIALS - for practical use of the advanced material of low activation ferritic steel Machine design is progressed in nation-wide collaboration with universities, institutes and industries. ### **Parameters of JT-60SC** - Sufficiently low (ρ *, ν *) plasmas close to DEMO - \rightarrow R_n ~3 m - Sufficiently longer duration than current diffusion time → ~100 s Modification to a superconducting tokamak, JT-60SC. - JT-60SC pursues plasma parameters deduced from DEMO concepts using low activation ferritic steel in the vacuum vessel. | Parameter | JT-60U | JT-60SC | |-------------------------------|----------------------------|-------------------------------------| | Pulse length | 15 s | 100 s | | Max. input power | 40 MW (10 s) | 44 MW (10 s) | | | | 15 MW (100 s) | | Plasma current Ip | 3 MA | 4 MA | | Toroidal field B _t | 4 T | $3.8 \text{ T (R}_p=2.8 \text{ m)}$ | | Major radius R _p | 3.4 m | 2.8 -3 m (2.8 m*) | | Minor radius ap | 0.9 m | 0.7-0.9 m (0.85 m*) | | Elongation κ_{95} | 1.8 (δ_{95} =0.06) | ≤ 2 (1.8*) | | Triangularity δ_{95} | $0.4 (\kappa_{95}=1.33)$ | ≤ 0.5 (0.35*) | * Nominal ## Modification to Superconducting Tokamak To be modified with maximum utilization of the present facilities such as torus building, heating systems and power supplies # **High Beta Plasma Control** Attainable β_N in JT-60SC for long-pulse and high-power heating capabilities. ## **High Performance Full Current Drive** ACCOME code analysis for 3 MA, 3.8 T, P_{NB} =30 MW, Z_{eff} =2 • Capability of full current drive of a plasma with $I_{hs}/I_n>0.8$, $\beta_N>4$ and $n\tau_E T\sim 1\times 10^{20}$ keVsm⁻³ for HH ~ 2 at $n/n_{GW}>0.8$ JT-60SC, JAERI, Snowmass 2002 presentation, Jul/8-19/2002 ## **Bird's Eye View of JT-60SC** JT-60SC enclosed in a cryostat with a diameter of 12 m. ### **Superconducting coils** #### **Toroidal field coils** Number 18 B_{max} 7.4 T Conductor Nb₃Al Total energy 1.7 GJ Weight 23.5 tons/coil #### **Center solenoid** Number 4 B_{max} 7.4 T Conductor Nb₃Sn Weight 41 tons Weight 41 ton ### **Equilibrium field coils** Number 6 (div. coil) B_{max} 5 T (7.4 T) Conductor NbTi (Nb₃Sn) Max. diameter 10.6 m ## **Summary** - JT-60 modification to a fully superconducting tokamak (JT-60SC) is being planned under nation-wide collaboration with universities, institutes and industries. - The objectives are to realize high performance steady state operation and to demonstrate plasma applicability of ferritic steel in reactor-relevant plasma regimes of a break-even class. - Basic design has been completed and detailed design is under way. - Now under discussion at governmental committees.