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ITER

INTERNATIONAL PROJECT ITER
Engineering Design Phase major radius 6.2m
(1992 _ 2001) minor radius 2.0m
plasma current 15 MA
Japan : :
toroidal field 53T
European Union k/d 1.85/0.49
Russian Federation fusion power amplification 310
(US until 1999) fusion power 400 MW (800 MW)
burn duration 400 s (3000 s)
external heating power 73 MW (110 MW)

negotiations among partners:

above + Canada construction costs (including

deferred items & management costs):
4.57 b€ (EU costing)

partner’s contributions in kind



role of ITER in Europe’s vision

 burning plasma physics
e integration of technology with physics

» demonstrate and test fusion power plant technologies

ITER Design Goals

Physics:
 ITER is designed to produce a plasma dominated by a-particle heating

» produce a significant fusion power amplification factor (Q = 10) in long-pulse
operation

e aim to achieve steady-state operation of a tokamak (Q =5)

» retain the possibility of exploring ‘controlled ignition’ (Q = 30)
Technology:

» demonstrate integrated operation of technologies for a fusion power plant

» test components required for a fusion power plant

» test concepts for a tritium breeding module



role of ITER in Europe’s vision

 ITER Is the fastest path of a success-oriented strategy to

a reactor

e patience with fusion as an energy option is running short

the King Panel (including
leading industrialists)
report:

The ITER project is the
essential step towards energy
production on a fast track.

Economist July 18, 2002:

fusion has demonstrated a new
physics constant: the 30 years
to fusion power

,the only reason to understand
burning plasmas is in order to
build a commercial fusion
power-plant*



tokamak research has

tokamak research is mature for the converged
step to a burning plasma - (1) ITER incorporates all

successfull
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Progress

tokamak research is mature for the step to a burning
plasma - (2) the progress in performance measure n T t

J B Lister, April 2001
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tokamak research is mature for the step to a burning
plasma - (3) targeted research to resolve remaining issues
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ITER s capabilities as a burning plasma experiment

ITER has also other missions besides burning plasma physics:

« but all its mission goals require it to to carry out foremost an
extensive and ambitious physics programme
e Its essential design features give it the capability to do this

—  pulse length (3000 s) and duty cycle (20%)
— diagnostic access & facilities
— flexible heating, current drive system
e total power
e composition
— divertor exchange capability

even for a partner who values differently the mission
objectives of ITER it gives best value/cost [burn-seconds*)/$]

*) or (tpum/te)/cost or (ty,mltskin)/costor .....



Fusion Power Plant Physics & ITER’s capabilities

as a burning plasma experiment

40

e advanced scenarios:

e sample scenarios illustrative 20|

» will be a primary research objective
(in particular regarding a-particle
physics)
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ITER s advanced scenarios are limited by conservativism rather than

technical capabllities (P;,.-> 800 MW, P

fus heat
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the need for physics-technology integration

some of the key issues arise at physics-technology
Interface

» past, recognized examples are
e tritium retention
» consequences of halo currents & vertical disruptions
e life — time issues in steady state

 others
* diagnostics (incl. real time control) in nuclear environment
« RWM-stabilisation in a device with superconducting coils

cannot be substituted by paper work:
reactor studies need feet on the ground



ITER s mission: physics & technology integration
role of R&D phase

steps in physics & technology
Integration

1. design

2 R&D

3. construction
4

operating experience

steps (1) and (2) accomplished

during Engineering Design

Activity 1992 - 2001
investment and value of
prototypes: 400 M€ for the
7 large projects

example: vacuum vessel segment

Sl Scale Sector Mocs!
e (750 of fl eorust

proof of accuracy in manufacturing and
welding with 3 mm accuracy
(also proof of inernational collaboration: a US-produced

welding robot welded a Russia-produced port to the
Japan-produced vessel)



development path centered around ITER:
the US version

Base Plasma physics

Major Facilities

Base fusion power technologies

v !

Base Plasma Support technologies

Base Technologies




development path centered around ITER:

a EU tokamak version (stellarator versions exist)
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ITER proponent’s conclusions from the workshop

 the design review of ITER has confirmed that there are
no show stoppers

» two areas identified as requiring further R&D are already at the
top of the EU-list

e ELM-mitigation
e tritium inventory

where we have a major R&D effort, involving also US
collaboration (Pisces) and a range of alternative options

 in two areas US codes have highlighted the need for re-
assessment or minor modifications

 LHCD current drive efficiency for advanced scenarios

« RWM stabilization requirements



US left ITER when
we had no site
proposal

now we have 4

welcome!

Summary

Cadarache, EU

Vandellos, EU




