
Plasma channel from EP beam 



Direct-drive ignition is the main thrust in LLE 
fusion research activities

I2092

•	 Fusion research at LLE is focused on building the foundations 
for a direct-drive–ignition demonstration at the National Ignition Facility (NIF)

•	 LLE is interested in the fusion-energy applications of inertial confinement 
fusion (ICF), but it is currently concentrating its efforts on demonstrating 
thermonuclear ignition of DT fuel

•	 Producing a burning plasma in the laboratory for the first time

–	 is a grand scientific challenge (“a star on earth”)

–	 has great scientific value in astrophysics, nuclear, 
and plasma physics

–	 has important implications for national security (Stockpile Stewardship)

–	 represents the fundamental block of fusion-energy development

	 by showing that fusion has the potential to be a viable energy source 



Direct- and indirect-drive ICF aim to ignite a DT plasma
by imploding capsules with on-target applied pressures
of ~100 Mbar
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•	 More energy coupled to the target
•	 Less-uniform driver	

•	 Less energy coupled to the target
•	 More-uniform driver	



NIF is currently configured in a polar-drive setting for 
indirect-drive ignition; this is not an optimal configuration 
for direct drive that requires spherical illumination 
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Hohlraum

Target

•	 The National Ignition Facility (NIF) at LLNL 
delivers ~2-MJ UV light at ~500 TW



Polar-drive–ignition experiments on the NIF requires 
beam repointing and upgrades to the laser system 
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The laser technology required for polar-drive ignition on the 
NIF using a NIF PAM is being demonstrated on OMEGA EP.



OMEGA is currently the premiere facility for direct-drive
experiments; it is coupled to a high-power, short-pulse 
laser (OMEGA EP) to explore advanced ignition and 
radiography    

I2094

The OMEGA laser at the
University of Rochester’s
Laboratory for Laser
Energetics (LLE)
delivers ~30-kJ UV light
at ~30 TW

The OMEGA EP laser delivers ~2-kJ
IR light in 10 ps (~2 PW) and 
20-kJ light in UV-ns pulses



The NIF is currently pursuing indirect-drive ignition; 
to assess the prospects for direct-drive ignition, 
OMEGA results are scaled to NIF energies

TC10256d
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Hydro-equivalent ignition on OMEGA



Ignition parameter     

Like in Magnetic Confinement Fusion, the Lawson 
criterion determines the ICF ignition condition.  
In ICF, ignition occurs in the central hot spot  

1χ >Ignition condition      

Hot 
spot Dense shell 

224 /
P
v Tα

τχ
σ ε

≡

3ITFx χ≈

LLNL Performance  
Parameter* 

*B. K. Spears et al., Phys. Plasmas 19, 056316 (2012).  



ICF implosions cannot achieve ~10-keV temperatures 
through compression alone

TC10258

•	 High T requires high implosion velocity Vi

•	 High Vi requires thin shells

•	 Thin shells break up in flight because of 
hydrodynamic instabilities
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The Lawson plot shows the performance of fusion 
devices with respect to thermonuclear ignition 
(not fusion energy) 

TC8678e R. Betti et al., Phys. Plasmas 17, 058102 (2010).
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Hydrodynamic similarity provides a tool for estimating
the energy scaling of implosion performance 
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•	 Scaling of ignition parameter (| > 1 for ignition)

•	 Expect improvement in relative nonuniformities on the NIF as a result 
of larger hot-spot size, more beams, and equal ice roughness
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Targets and laser pulses are designed for OMEGA
to reproduce direct-drive NIF hydrodynamics

TC10267b
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Hydro-equivalent ignition at 26 kJ on OMEGA requires
an ~1.7× improvement in areal density and ~2× 
improvement in neutron yield
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•	 | = 0.16 is required for hydro-equivalent ignition on OMEGA

•	 tR is the areal density,  Yn is the neutron yield, and MDT is the DT 
fuel mass

•	 Current OMEGA experiments: MDT = 0.02 mg, tR . 0.18 g/cm2, Yn . 
2 × 1013 " | = 0.09

•	 Required for hydro-equivalent ignition: MDT = 0.02 mg, tR . 0.3 g/cm2, 
Yn . 4 × 1013 " | = 0.17
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OMEGA performance can be scaled up to NIF energies 
and spherically symmetric drive. The extrapolated ITFx 
for direct drive on NIF is about 0.18   χ ≈ 0.56 

χ ≈ 0.56 



What is limiting the performance of OMEGA 
implosions?



Isolated defects on the shell surface of cryogenic DT 
targets severely limits the implosion performance 
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•	 Isolated surface debris on the target appear to be limiting the implosion 
performance

–	 a significant engineering effort is underway to remove the defects

–	 a 2011 shot series showed improved yields when fewer defects were present
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The Tritium Fill System hydrogen permeator will remove all 
non-hydrogen contaminants in the LLE DT fuel supply
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The performance of direct-drive capsules is further 
degraded by cross-beam energy transfer (CBET)

E19905t

•	 CBET involves electromagnetic 
(EM)-seeded, low-gain 
stimulated Brillouin scattering

•	 EM seed is provided by edge-
beam light

•	 Center-beam light transfers 
some of its energy  
to outgoing light*

•	 The transferred light bypasses 
the highest absorption region 
near the critical surface*

Target

Beam 2

Beam 1

Edge-beam ray

Center-beam ray

Cross-beam
energy transfer

CBET reduces laser absorption 
and hydrodynamic efficiency.**

	 *	D. H. Edgell et al., Bull. Am. Phys. Soc. 52, 195 (2007); 
		 53, 168 (2008); 54, 145 (2009).
	**	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).



Several options to mitigate the effects of CBET 
are currently under investigation
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•	 Other possible solutions

–	stacked laser pulse:  96 beams with large focal spot Rbeam = Rtarget 
followed by 96 beams zoomed at Rbeam =  0.5 Rtarget 

–	moderate-Z ablators like carbon or saran (CHCl) or glass

•	 Two-state laser beam zooming
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Demonstrating hydro-equivalent ignition on OMEGA 
is a major step forward but does not resolve all the 
uncertainties about achieving ignition on the NIF
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Laser-energy collisional 
absorption Less Better More

Laser–plasma instabilities and 
hot-electron preheat Less Worse More

Cross-beam energy transfer Less Worse More

Radiation preheat More Better Less

Non-hydrodynamic physics 
that does not scale

OMEGA NIF



Alternate direct-drive–ignition schemes



Shock ignition is a promising alternative to conventional
direct-drive implosions
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2-D simulations of the shock-
ignition target designs for the 
NIF in polar drive predict ignition 
with Gain = 52 at 750 kJ of laser
energy (no CBET included) 



Research in high-intensity laser–plasma interaction 
provides the basis for fusion applications of high-power 
lasers (fast ignition)
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Summary/Conclusions

Steady progress continues to be made in direct-drive
ignition; ignition-scalable performance on OMEGA 
is within reach 

•	 Current cryogenic implosions on the OMEGA laser do not yet scale
    to ignition on the NIF 

•	 Hydro-equivalent ignition on OMEGA requires  improvements in
    areal density (~1.7×) and neutron yields (~2×) 

•	 Causes for implosion-performance degradation have been
    identified (isolated defects and cross-beam energy transfer)
    and are being addressed

•	 Shock ignition is a promising path to direct-drive ignition and 
    ignition designs for the NIF have been developed and simulated

•	 High-power lasers provide additional ignition options (fast ignition)
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