

The National Ignition Facility and the Ignition Campaign

Presentation to

AAAS 2013 Annual Meeting
February 14-18, 2013

Debra A. Callahan

Group Leader for ICF/IFE Target design

Lawrence Livermore National Lab

Fusion can be accomplished in three different ways

This talk describes our progress in inertial confinement

Ignition on NIF requires extremes in density and temperature

Deuterium-Tritium (DT) fuel

Ignition on NIF requires extremes in density and temperature

Deuterium-Tritium (DT) fuel

There are two principal approaches to compression in Inertial Confinement Fusion

This talk focuses on Indirect Drive

Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition

Story of NIF and Ignition

The National Ignition Campaign (NIC) has made strong progress towards ignition and initiated operation of NIF as the world's premier HED science facility

Diagnostics

The ignition point design drove demanding technical requirements

We have met these requirements

NIF operational capabilities — laser energy/power

- NIF laser is steadily increasing NIF has now achieved its 1.8 MJ milestone, with a power of 522 TW in an ignition pulse format
- Operation at over 9 J/cm² at 3ω
- The NIF has intrinsic capability to continue on this growth path for several more years

Increase in energy roughly 10kJ/week, now exceeding the original NIF specifications (1.8 MJ / 500TW)

60 target diagnostics enable cutting edge science on the NIF

LLNL

MIT

LANL

CEA

• LLE

Duke

NSTec

SNL

• U of M

GSI

- LBNL
- AWE

Over 15 universities participating in the science program

Target is the "fusion system" which can be modified on every shot

We can now build capsules that meet ignition target specifications

1mm

20nm surface finish

Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition

Shots in 2010-2011, with low laser drive and less compression, moved toward point design

In 2012, higher compression and more laser drive resulted in CH mix into the hotspot

We believe some of the pressure deficit is due to nonspherical compression

High convergence can lead to instability growth that "mixes" plastic into the fuel

We have begun measuring fuel layer asymmetry inflight with backlit radiography

The capsule starts at 2mm diameter

Images inflight show Legendre mode 4 "diamond" shape to fuel layer

Legendre mode 4 asymmetry is corrected by 5-10% change in hohlraum length

300 ps later, we can see the hotspot begin to form

Despite cold fuel asymmetry the hot spot looks quite round at peak emission

Most recent data (Oct-Dec 2012) probes fuel shape at stagnation

2-d and 3-d capsule simulations are used to study the capsule implosion

NIF laser, targets, and diagnostics are in place and significant progress has been made toward ignition

- Full-scale fusion facility is now operational, working to ignition specifications
 - Full energy, high availability laser
 - Wide diagnostics suite
 - Broad set of experimental platforms
- After 18 months of cryogenic layered, implosion experiments, now within a factor of 2-3 in pressure from ignition
 - This corresponds to a factor of 5-10 in yield
- Focus now is on understanding the remaining gap
 - Near term focus will be on the interaction of gross asymmetry with fuel mix
 - Approach outlined in NNSA report to Congress (Dec 2012)

