Issues and Paths to Magnetic
Confinement Fusion Energy

Hutch Neilson
Princeton Plasma Physics Laboratory

Symposium on Worldwide Progress Toward Fusion Energy
AAAS Annual Meeting
Boston
16 February 2013



Issues and Paths to MFE: Outline

* International context
 Scientific & technical challenges
* U.S. next-step planning



Context: MFE in Transition

ITER: Landmark accomplishments by the world MFE
community:

v'Established ITER’ s scientific & technical (S&T) basis.
v'Developed the design.

v'Formed an international project.

v'Started construction.

With ITER, MFE has crossed a threshold to a phase of the
program increasingly focused on fusion energy generation.

Making ITER succeed is the first task for this new phase.

Several countries are planning major facilities and next steps
beyond ITER on the path to DEMO.
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(&) 1% IAEA-DEMO Program workshop

Mission of Chi;a’s Fusion ETR:
« 50 - 200MW of fusion power Jinal option
* Closed tritium fuel cycle.

« Explore options for key
technologies.
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Korean Fusion Energy Development Roadmap

Fusion energy Basic planforthe | :;ﬁi:h‘:z;::} Phase 2 ('12-'21) Phase 3 ('22-'36)
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rMission of S. Korea’s K-DEMO

» Technology representative of the commercial plant. ‘
~+ Phase |: Component testing, demonstration of... st o
* Net electricity generation )
» Closed tritium cycle.
» Phase Il (after internal component upgrade):
« Advanced component testing
* Net electricity >450 MWe.
. Availability >70% P

* Competitive cost of electricity.
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Planning the Roadmap to Fusion Energy

The international discussion of scientific and technical needs
has broadened in recent years:
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Abstract

With the ITER project now well under way, the countries engaged in fusion research are planning, with renewed
intensity, the research and major facilities needed to develop the science and gy for harnessing fusion energy.
The Workshop on MFE Roadmapping in the ITER Era was organized to provide a timely forum for an international
exchange of technical information and strategic perspectives on how best to tackle the remaining challenges leading
to a magnetic fusion DEMO, a nuclear fusion device or devices with a level of physics and technology integration
necessary 1o cover the essential elements of a commercial fusion power plant. Presentations addressed issues
under four topics: (1) Perspectives on DEMO and the roadmap to DEMO; (2) Technology; (3) Physics-Technology
integration and optimization; and (4) Major facilities on the path to DEMO. Participants identified a set of technical
issues of high strategic importance, where the development strategy strongly influences the overall roadmap, and
where there are divergent ings in the world ity, namely (1) the ions used in fusion design
codes, (2) the strategy for fusion materials development, (3) the strategy for blanket development, (4) the strategy for
plasma exhaust solution development and (5) the requirements and state of readiness for next-step facility options. It
was concluded that there is a need to continue and to focus the international discussion concerning the scientific and
technical issues that determine the fusion roadmap, and it was suggested that an international activity be organized
under appropriate auspices to foster international cooperation on these issues.

University of California at Los Angeles, U.S.A.
15-18 October 2012

Reproduced by the IAEA
Vienna, Austria, January 2013

1. Introduction exchange of technical information and strategic perspectives
on how best to tackle the remaining challenges leading to a NOTE

With the ITER project now launched on its mission (o achieve,  magnetic fusion DEMO, a nuclear fusion device or devices

for the first time, @ magnetically confined burning fusion iy, 4 jeve of physics and technology integration necessary

plasma on a power-plant scale, the countries engaged in
10 cover the essential elements of a commercial fusion power
fusion rescarch are planning, with renewed intensity, the

The Material in this document has been supplied by the authors and has not been edited by the

rescarch and major facilities needed to develop the fusion
nuelear science and technology for hanessing fusion energy.
The Workshop on MFE Roadmapping in the ITER Era was
organized to provide a timely forum for an international

0029-5515/12/047001+1133.00

plant. Sixty-five researchers from 10 countries, including all
the ITER partners, attended the workshop, which was held
7-10 September 2011 at Princeton University. The level
of international participation reflected a widely felt sense of
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necessarily reflect those of the government(s) of the designating Member State(s). In particular,
neither the IAEA nor any other organization or body sponsoring this meeting can be held
responsible for any material reproduced in this document.
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International Perspective on the Roadmap

Fusion development is approached from many directions, e.g. from
fundamental science, from energy technology, etc.

The diversity of approaches is an asset- we can benefit from each
other’s programs.

The characteristics of the world’s DEMO program are emerging and
will become clearer as government decisions are made to implement
major next-step facilities.

Meanwhile, there is general agreement on basic points:

 The central importance of ITER.

« The main outstanding scientific and technical challenges

« The continuing importance of international collaboration.

11



Key Scientific and Technical Challenges

Plasma confinement and control.

Plasma exhaust

Power extraction and tritium self-sufficiency.
Availability

~wn =

Research on these issues constitutes a world
DEMO Program.
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Plasma Confinement and Control

—

2, i To recap from A. Hubbard...

Today’s fusion experiments are

’ " ‘f\j‘-}\ addressing plasma questions for
¥ ~% ITER and future machines:

« What are the best control strategies for
plasmas operating close to stability
boundaries?

L\ N
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'- ‘W tokamak _ _

« How is plasma behavior affected by
material choices for plasma-facing

surfaces?

« How can we improve on the basic
toroidal magnetic confinement
configuration?

— Application of non-axisymmetric fields.
stellarator - Optimized edge configuration.
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Edge-Localized Instabilities Are Suppressed by
Application of 3D Magnetic Fields
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Inject Fuel Pellets to Trigger the Instability at a Lower
Threshold and Release Energy in Smaller Bursts

T
pO1haipc 146687 Pellet Ablation Signal

T |.\|\, |

Pellets entering plasma at 20 Hz _

T T
s02f 146687 (SPECTROSCOPY) Plasma Photodiode Signal

ELMs triggered by pellets

20 1 22
T|me%sec)

2.3

1

Pellets leaving gun barrel.

Pellet injection
configuration on
tokamak.
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Control of a Burning Plasma: ITER

To recap from R. Hawryluk,
with ITER we will learn:

» Performance and behavior of
a plasma dominated by
alpha-particle self-heating.

» Test of plasma control
strategies under burning
conditions at reactor scale.

« Advances in fusion machine
technology and engineering.

ITER is the burning plasma
step for all MFE approaches.
®)PPPL
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Plasma Exhaust Handling

eparatrix

N « DEMO exhaust power per unit
length (P/R) is 4xITER’s.

New solutions are needed!
magnetic
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Closed magnetic
surfaces
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Plasma Exhaust: Configuration Solutions

Snowflake

Use a high-order null (vs. a simple
X-point) to spread the divertor field
lines over a wider surface area. 2
Lower peak heat flux to target.

SF+ (0=0.5) SF SF- (0=0.5)

-
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Plasma Exhaust: Configuration Solutions

Super-X

Channel the diverted field lines to
larger radius to spread heat loads,
and increase isolation from main
chamber.

Super-X design for
MAST-Upgrade (U.K.)

Height [m]

Standard X-point
| Divertor (JET)

. MAST-
() Upgrade
® ) PPPL
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Plasma Exhaust: Material Solutions

Tungsten
« Favored for erosion control due to low sputtering yield.
* Plasma-tungsten compatibility is studied in several machines.

‘ ASDEX-Upgrade Alcator C-Mod
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Plasma Exhaust: Technology Solutions

Technology Challenge: ﬁ(IT

Karlsruhe Institute of Technology

® Definition of the divertor: pipe, surrounded by tungsten
® (i): type of coolant?
® (ii): structural material for the pipe?
® (iii): armour material? = tungsten

® Question: What amount of heat can we remove with a specific
combination of (i) coolant and (ii) structural material?

picture: PLANSEE SE
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Fusion Power Extraction and Tritium Breeding

Functions of the Blanket-— A
First Wall (FW) system |

A. Nuclear and Plasma Power
Absorption and Extraction

B. Tritium Breeding and
Recovery

C.Radiation Shielding of the
Vacuum Vessel and

Magnets

Vacuum

Coil

Field Pumping
. Coils Duct
Toroidal
Field

[
i Solenoid
: Coil
i
i
]
E FW /
i Vacuum Blanket
i Vessel
i
RF
Antenna
i Plasma
: Shield
Vacuum
Vessel
: FW /
g Blanket Shield
[
;Divertor
; Plates — |
]
-- [}
. Vacuum
Pumping
Duct

C

/
| e
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Blanket Designs

Liquid breeder: Dual-Coolant Lead Lithium (DCLL)

He Flow

Basic Features

— Flowing lead-lithium breeder/coolant
in large parallel channels

— Flow channel inserts (silicon carbide) el T ,
for MHD pressure drop control and l T l { f

Shield

thermal insulation

— Reduced-activation ferritic steel
(RAFS) first wall and structure
cooled by helium

\
'SiC Flow Channel
Inserts

Possible Advanced features

— Potential for high temperature
operation with high temperature
tritium and heat extraction

RAFS Structure

Issues & Paths to MFE / H. Neilson / AAAS Meeting / 16 February 2013 | - 24



Blanket Materials Engineering Challenges

Functional Materials Structural Materials

JA RAFS Mockup

Simulation of PbLi
Mixed Convection
MHD flow and
temperature
contours in a DCLL
channel

! Eurofer FW mockup

Liquid metal thermofluid-MHD. s
Corrosion. « Fabrication & joining.

« Transport & extraction of tritium in « Heat transfer
PbLi. « Reliability and failure modes.
« PblLi fabrication; chemistry control. < Material property changes in service.

Issues & Paths to MFE / H. Neilson / AAAS Meeting / 16 February 2013 I
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Materials in the Fusion Environment

Unique to fusion: microstructure and property changes due to
coupled effects of displacement damage (displacements per atom

or dpa) and Helium.

* Low temperatures

» Hardening + He embrittiement

= Loss of ductility

= Loss of fracture resistance
* Intermediate temperatures

= Swelling + He

" [rradiation creep + He

* High temperatures
» Thermal creep

* He embrittlement (> 10 dpa)

» Fatigue and creep-fatigue,
crack growth

= Corrosion, oxidation and
impurity embrittlement

Lifetime

. . v
Dimensional \ ¢
Instability

Hardening,
Fracture

Materials Design
Window

Temperature
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Structural Materials Maturity for Fusion
Neutron Irradiation Effects.

< O—-5years . S-—15years .. >15years >
10 dpa/100 appm He 50 dpa/500 appm He 150 dpa/1500 appm He
Data Base Need = g = g = g
w| < - L | < > | < >
= s >[=13[2 25 [=13 282552
Radiation Effects

Hardening & Embrittiement

Phase Instabilities

Irradiation Creep

Volumetric Swelling

High T Helium Effects

Planning for next-step fusion nuclear facilities currently
focuses on ~20 dpa (2 MW-yr./m? neutron exposure) for
first-generation components.
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Availability

Availability is a key challenge for fusion, now
receiving more attention.

Rapid replacement of major components, using

remote handling technology, is a concept-level
design driver.

Reliability and maintainability must be prominent
in the design of all components.
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(&) 1t IAEA-DEMO Program workshop

Studies for Chinese Fusion Engineering Test Reactor:
Remote Handling concept for “big window” style strategy

All of the in-vessel components can be moved outin onetime.

16273.4

12400

T

1623.3
1530
1018

Ylassa area |

w

9661

OIVERTOR

4 Move back the wheels with the
blanket, by gearsystem \L

1. Dismantle the
window's flange

2. Cut the cooling pipe and other

connection things by remote handing

3. Insetwheels assemble underthe
blanketand lifting the blanket

5. Use remote handing and guide
rail to keep the blanket balance

6.Close the window's flange and move
the CASK to hotcell forrepair




U.S. Next-Step Planning Focuses on a
Fusion Nuclear Science Facility (FNSF)

 The FNSF mission space is wide:

Materials Component Tritium Self- Reliability/ Net
research Testing Sufficiency Maintainability Electricity

Increasing System Integration

« Basic FNF mission requirements (typ.):
- Steady-state / high duty-cycle DT plasma.
- Tritium self-sufficiency.
— Neutron wall loads (NWL) challenging to internal components: 1-2 MW/m?2.
— Neutron exposure challenging reliability and lifetime limits: = 2-3 MW-yr./m?.
- Accommodation for test blanket modules.

» Optional extras:
- Prototype reactor design and maintenance.
- Generate (net) electricity.
- Achieve high availability.
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U.S. Fusion Nuclear Science Facility Designs

Materials Component Tritium Self- Reliability/ Net
research Testing Sufficiency Maintainability Electricity
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Peng, etal, FS.&T.60  Stambaugh, et al., F.S.&T. 59 (2011) “ienard. etal, NF 51 (2011)
(2011)
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Summary

* A new phase of Magnetic Fusion R&D has begun.

« Succeeding with ITER is the first imperative.

* |[n parallel, nations are planning roadmaps to
DEMO, moving ahead on DEMO R&D, and
planning integrated fusion nuclear facilities.

* A range of next-step missions and design options
are studied in the U.S.

* There are multiple approaches to fusion
development but but broad agreement on the
goals, critical tasks, and value of international
collaboration.
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