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Abstract

We present analysis which supports the feasibility of a next-step burning plasma
experiment. The FIRE design has R = 2 m, a = .525 m, κ95 = 1.77, δ95 = 0.4, B =
10(12) T, I = 6.44(7.7) MA, H = 1.2 (1.0) for the reference (high-field) discharge,
with monotonic q-profile and sawtoothing ELMy H-mode operation. The primary
issues for MHD are associated with (1) the q=1 surface, (2) energetic particle modes
(3) edge currents due to the H-mode pedestal, (4) neoclassical tearing modes, and (5)
error fields and locked modes. We find (1) the m=1, n=1 mode requires non-linear
analysis including energetic-particle effects, (2) α-particle driven Alfven modes,
RTAE and KTAE, are expected to be stable for βα  < 0.5 %, (3) the predicted
critical value for the onset of the NTM is very close to the operating point for the
high-field option, and may be mediated by self or active control of seed island width
or active island current drive, (4) the nominal self-consistent operating point is
stable to external kink modes without a conducting wall and (5) error field
requirements need to be revisited. Advanced operating modes with q > 2
everywhere and high-bootstrap fraction also hold promise but need to be further
developed.
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Fire is a logical next step between JET/JET-U
and a fusion power plant
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AIRES designs

• A major step in the study of
alpha-heating dominated
plasmas

• Provides critical data for
extrapolating to reactors

• Provides data point for critical
benchmarking of advanced
simulation codes and will

• Stimulate development of
even more advanced
numerical simulation

• Will provide focus to
experimental and theory
programs



FIRE operating modes

IP(MA) BT T(s) βN fBS

Standard operating mode (LF) 6.5 10 21 2.7 0.3

High-field (shorter pulse mode) 7.7 12 12 1.9 0.2

--------------------------------------------------------------------------------------------

Advanced Tokamak 1st stability 5.6 9 30 2.9 0.5

Reversed Shear Wall stabilized 4.5 6.7 60 4.5 0.8



• arbitrary transport model
• neoclassical-resistivity
• bootstrap-current,
• auxiliary-heating
• ballooning-mode transport

Tokamak Simulation Code (TSC) is unique tool
for modeling the evolution of a free-boundary

axisymmetric plasma on the resistive time scales

•  circuit equations for all the poloidal field coils
•  induced currents in passive conductors, halo
•  feedback systems for IP, position, and shape.

TSC was chosen by ITER as the standard model for:
•   poloidal flux consumption and pulse length
•   timescales for current rampup and rampdown
•   shape control requirements

New Directions:
•  integrated modeling of core and edge
•  improved models of non-linear saturation of high-β
m=1 mode, ELMs, balloon-unstable region

• current-drive,
• alpha-heating,
• radiation,
• pellet-injection,
• sawtooth model,

Jardin, et al, Nucl. Fus. 39 (2000) 923
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t=  5 ms t=33 ms

t=180 ms t=250 ms

Vessel Currents

P+V Current

Plasma Current

PF2

PF1/100.

PF3 PF5

time(s)

TSC simulation of NSTX shot 100920

Simulation uses experimental coil currents:
computes plasma and vessel currents

E .. experimental data    S..computed by TSC
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Plasma Current  and Toroidal Field
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Guidelines for Predicting Plasma Performance

Confinement (Elmy H-mode) ITER98(y,2):

 τE = 0.144 I0.93 R1.39 a0.58 n20
0.41 B0.15 Ai

0.19 κ0.78 P heat -0.69 H(y,2)

Density Limit:

n20 < 0.75 nGW = 0.75 IP/πa2

H-Mode Power Threshold:

Pth > (2.84/Ai) n20
0.58 B0.82 R a0.81



High Field:  H = 1.0  (12 T, 7.7 MA) Low Field:  H = 1.2  (10 T, 6.5 MA)

Time (sec) Time (sec)

Q > 10 for 9 sec Q > 10 for 18 sec

α-heating α-heating

ICRF ICRF

total total



High Field Low Field



FIRE Discharge Trajectories in Stability Space
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Physics Question:  Role of the m=1 mode

•  Ideal MHD theory predicts m=1,n=1 mode unstable at high β for q0 < 1

• High-n ballooning modes also predicted to be unstable in the vicinity of
and interior to the q=1 surface

• Proper physics description must take into account energetic particle
drive, kinetic stabilization, 2-fluid effects, and non-linear saturation
mechanism

• This should be [and is] one of the major thrusts of the 3D macroscopic
simulations communities

• FIRE will provide critical data point for both extrapolations and for code
benchmarking



Low Field:  10 T, 6.5 MA
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High Field:  12 T, 7.7 MA
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Comparison of unstable Eigenvalues

Low Field

γ2 = -.0083

High Field

γ2 = -.0039
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FIRE nominal operating point is stable to kink modes

β = 3.3%
βN= 2.61

Stability boundary
for plasmas with the
FIRE κ,δ and A, and
with q95=3.1



Critical βN fit for q=1 sawtoothed induced m/n=3/2 NTM

ν = νi/εωe*
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Physics
question:  NTM
• neoclassical tearing
mode sets β limits in
many long-pulse
discharges

• scaling of this to new
devices largely result of
empirical fitting of quasi-
linear formula

• this is another major
thrust of 3D macroscopic
modeling effort

• FIRE will provide
critical data point



Kinetic MHD is becoming
much more capable

Fu, Gorelenkov
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ATFTR Equilibrium

R=2.62 m, a=0.95 m,

βpl(0) = 5%, βpl +βh = const,

B=4.45 T

Deuterium hot slowing down
ions vh = 109 cm/sec, vh/vA=1,
R/ρh = 55.6

Fishbone branch reproduced
by NOVA-2 and M3D

Linear stabilization phase of
n=1 mode agrees for 3 codes

[nonlinear]

[non-perturbative]

[linear]



NOVA-2 analysis









Resistive Wall Mode and  Active Feedback Stabilization

VACUUM model includes plasma,
wall, and coil surface

Induced currents in wall in absence
of feedback

We are developing a major extension of the linear stability codes to
include resistive walls, coils, circuit equations, feedback systems,
with self-consistent plasma response…interface with both PEST and
GATO—also benchmark with Columbia VALEN code

plasma

resistive wall

coil surface

Chance, et al. IAEA 2000, Phys. Plasmas 4 (1997) 2161



ω2 vs qedge for various γτs using GATO + VACUUM:  for a
conformal resistive shell at b = 0.5 a.

•γτs → ∞ reproduces
perfectly conducting
shell results

•γτs → 0 gives no-wall
limit

•γτs in between gives
intermediate result

Future Plans:

• include sensor and
feedback coils in
system while keeping
the self-adjoint
property M.Chance, PoP, 4 (1997) 2161



M3D code is being applied to explain physical mechanism
for deep penetration of inside pellet launch

• first 3D simulation of this
experimentally discovered
phenomena

[Strauss, Park, et al, Phys. Plasmas
7 (2000) 250]

• led to development of 2D
model now in TSC code

[Jardin, Schmidt, et al, Nucl.
Fusion 39 (2000) 923]



Energy Confinement

• Empirical scaling laws predict FIRE will achieve Q=10 at H98=1.2 (LF)
or H98=1.0 (HF) using ITER98-H(y,2) fit to data
– Need to examine scaling of narrower subsets of data:  eg. With n/nGR > 0.6,

Ti/Te < 1.5, q95 < 3.2,βθ >0.5

• Good theory based model of plasma confinement would increase
confidence…such as what is coming from Gyrokinetic codes
– FIRE would provide invaluable calibration point for such codes

• Good theory based model of physics of L-H transition would increase
confidence:  threshold power, edge pedestal height and width

• Some uncertainties regarding impact of sawtooth, NTM, and other
MHD on energy confinement



 conventional operating modes

• the effect of H-mode profiles on MHD stability  (Manickam)

•  relation to ELMS,  n ~ 5-10 peeling modes,  bootstrap currents

•  error fields and locked modes (LaHaye, et al)

• need to assess disruption effects

  reversed shear operating modes
•  characterization of no-wall advanced mode for entire discharge  (Ramos)

•  wall stabilized advanced modes (GA/PPPL/Columbia experiments on DIII)

 other advanced modes
• off axis CD to raise q0  (Kessel)

• edge current drive to improve stability (?)

Other Physics Issues for FIRE



Summary

• No physics “showstoppers” have been identified, but lots of interesting
physics issues will come into play

• Self-consistent TSC discharge simulations exist for both the high-field
(12 T, 7.7 MA, H=1.0) and low-field ( 10T, 6.75 MA, H=1.2) operating
modes

• Overall, MHD stability looks favorable.  Primary uncertainty due to:
•  MHD activity near q=1 surface
•  edge currents due to H-mode pedestals
•  neoclassical tearing modes
•  error fields and locked modes

• Experimental prototyping of the FIRE operating modes would be very
beneficial

• “Advanced Modes” need to be further developed


