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Abstract

We present analysis which supports the feasibility of a next-step burning plasma
experiment. The FIRE design has R =2 m, a=.525m, Ky = 1.77, 8, = 0.4, B =
10(12) T, I = 6.44(7.7) MA, H = 1.2 (1.0) for the reference (high-field) discharge,
with monotonic g-profile and sawtoothing ELMy H-mode operation. The primary
issues for MHD are associated with (1) the g=1 surface, (2) energetic particle modes
(3) edge currents due to the H-mode pedestal, (4) neoclassical tearing modes, and (5)
error fields and locked modes. We find (1) the m=1, n=1 mode requires non-linear
analysis including energetic-particle effects, (2) a-particle driven Alfven modes,
RTAE and KTAE, are expected to be stable for §, <0.5 %, (3) the predicted
critical value for the onset of the NTM is very close to the operating point for the
high-field option, and may be mediated by self or active control of seed island width
or active island current drive, (4) the nominal self-consistent operating point is
stable to external kink modes without a conducting wall and (5) error field
requirements need to be revisited. Advanced operating modes with q > 2
everywhere and high-bootstrap fraction also hold promise but need to be further
developed.
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FIRE operating modes

Standard operating mode (LF)
High-field (shorter pulse mode)

T(s)

Advanced Tokamak 1% stability
Reversed Shear Wall stabilized

I(MA) B,
6.5 10
7.7 12
5.6 9

4.5 6.7



Tokamak Simulation Code (TSC) is unique tool
for modeling the evolution of a free-boundary
axisymmetric plasma on the resistive time scales

* arbitrary transport model * current-drive,
passive cpnductors * neoclassical-resistivity . alpl.la-.heating,
ﬁ ________ * bootstrap-current, » radiation,
PF1 (OH)|| " e » auxiliary-heating » pellet-injection,
« ballooning-mode transport  * sawtooth model,
plasmay « circuit equations for all the poloidal field coils

 induced currents in passive conductors, halo

limiters » feedback systems for I, position, and shape.

; v PES TSC was chosen by ITER as the standard model for:
vacuum__|g» « poloidal flux consumption and pulse length
S s k)  timescales for current rampup and rampdown

« shape control requirements

PF coil with New Directions:
circuits and « integrated modeling of core and edge
feedback systems  improved models of non-linear saturation of high-f3

m=1 mode, ELMs, balloon-unstable region

Jardin, et al, Nucl. Fus. 39 (2000) 923
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computes plasma and vessel currents
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Guidelines for Predicting Plasma Performance

Confinement (Elmy H-mode) ITER98(y,2):

T = 0.144 1093 R1.39 40.58 n200.41 BO-15 Ai0.19 K078 P heat -0.69 H(Y,Z)

Density Limit:

n,, < 0.75 ngy = 0.75 /a2

H-Mode Power Threshold:
P, > (2.84/A)) n,, 038 BO82 R a081



High Field: H=1.0 (12 T, 7.7 MA)

Low Field: H=1.2 (10T, 6.5 MA)
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FIRE Discharge Trajectories in Stability Space
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Physics Question: Role of the m=1 mode

* Ideal MHD theory predicts m=1,n=1 mode unstable at high 3 for q, < 1

* High-n ballooning modes also predicted to be unstable in the vicinity of
and interior to the q=1 surface

* Proper physics description must take into account energetic particle
drive, kinetic stabilization, 2-fluid effects, and non-linear saturation
mechanism

* This should be [and is] one of the major thrusts of the 3D macroscopic
simulations communities

* FIRE will provide critical data point for both extrapolations and for code
benchmarking



Low Field: 10T, 6.5 MA
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High Field: 12 T, 7.7 MA

Balloon and Mercier stability
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Comparison of unstable Eigenvalues

Low Field High Field
v* =-.0083 v* =-.0039
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FIRE nominal operating point is stable to kink modes
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Critical B fit for g=1 sawtoothed induced m/n=3/2 NTM

Physics
question: NTM
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many long-pulse
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+~  0.006 -
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linear formula
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(From LaHaye, Butter, Guenter, Huysmans, Marashek, and Wilson)



Kinetic MHD 1s becoming

Fishbones
much more capable

TFTR Equilibrium

R=2.62 m, a=0.95 m,

B,1(0) = 5%, B, +B, = const,
B=4.45T

Deuterium hot slowing down
ions v, = 10° cm/sec, v,/v =1,
R/p, =55.6

Fishbone branch reproduced
by NOVA-2 and M3D

Linear stabilization phase of
n=1 mode agrees for 3 codes

Fu, Gorelenkov



FIRE regular g-profile

NOVA-2 analysis
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FIRE regular g-profile plasma variations

FEEL
case |n.(0},10"em * | ngpe(0), 10"em 2 | T(0}, keV |1/, | Pro, MW | 8,{0}, %
1-unst. 559 4 22 20 0.6b 257 15
2-unst. b.39 4 B2 17.56 0.75 262 1.05
3-stab. 745 5. 62 15 0.89 263 0.69
4-gtab 8.94 b.74 125 1.06 250 04

In regular g-profile there is window for RTAE free operation.
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KTAEs are still unstable.

KTAE: Sgrie — 0.5% atrfa — (.35 analysis and 8,04 — 0.33%



Regular ¢-protfile with relaxed fast particle pressure.

I
It the profile 1s allowed to relax without particle loss, stability 1o these Aliven waves
18 achieved at higher Syura — 1%.
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Inversed q-profile
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RTAE is found near q,..,at crifical Sp,m — 10.23% at rfa — 0.4, {local 8, — 0.047%).
NO relaxed RTAE stable profiles were found. Alphas will be tragported cutside g

surface.



Resistive Wall Mode and Active Feedback Stabilization

We are developing a major extension of the linear stability codes to
include resistive walls, coils, circuit equations, feedback systems,
with self-consistent plasma response...interface with both PEST and
GATO—also benchmark with Columbia VALEN code
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VACUUM model includes plasma, Induced currents in wall in absence
wall, and coil surface of feedback

Chance, et al. IAEA 2000, Phys. Plasmas 4 (1997) 2161



®* VS (g4 fOr various YT, using GATO + VACUUM: for a

conformal resistive shell at b= 0.5 a.

*YT, — oo reproduces
perfectly conducting
shell results

*yt,— 0 gives no-wall g

limit

*YT, In between gives
intermediate result

Future Plans:

e include sensor and
feedback coils in
system while keeping
the self-adjoint

property
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M3D code is being applied to explain physical mechanism
for deep penetration of inside pellet launch

® first 3D simulation of this
experimentally discovered
phenomena

[Strauss, Park, et al, Phys. Plasmas
7 (2000) 250]

o

* led to development of 2D
model now in TSC code

[Jardin, Schmidt, et al, Nucl.
Fusion 39 (2000) 923]




Energy Confinement

Empirical scaling laws predict FIRE will achieve Q=10 at Hye=1.2 (LF)
or Hye=1.0 (HF) using ITER98-H(y,2) fit to data

— Need to examine scaling of narrower subsets of data: eg. With n/n,; > 0.6,
T/T,<1.5,qys <3.2,3,>0.5

Good theory based model of plasma confinement would increase
confidence...such as what is coming from Gyrokinetic codes
— FIRE would provide invaluable calibration point for such codes

Good theory based model of physics of L-H transition would increase
confidence: threshold power, edge pedestal height and width

Some uncertainties regarding impact of sawtooth, NTM, and other
MHD on energy confinement



Other Physics Issues for FIRE

conventional operating modes

* the effect of H-mode profiles on MHD stability (Manickam)

« relation to ELMS, n ~ 5-10 peeling modes, bootstrap currents
. error fields and locked modes (LaHaye, et al)
* need to assess disruption effects

reversed shear operating modes

* characterization of no-wall advanced mode for entire discharge (Ramos)

» wall stabilized advanced modes (GA/PPPL/Columbia experiments on DIII)

other advanced modes

* off axis CD to raise q, (Kessel)

* edge current drive to improve stability ()



Summary

* No physics “showstoppers” have been identified, but lots of interesting
physics issues will come into play

* Self-consistent TSC discharge simulations exist for both the high-field
(12 T, 7.7 MA, H=1.0) and low-field ( 10T, 6.75 MA, H=1.2) operating
modes

e Overall, MHD stability looks favorable. Primary uncertainty due to:
 MHD activity near g=1 surface
» edge currents due to H-mode pedestals
 neoclassical tearing modes
« error fields and locked modes

* Experimental prototyping of the FIRE operating modes would be very
beneficial

* “Advanced Modes” need to be further developed



