Fusion and Plasma Physics are at the Core of Nature's Most Powerful Self-Driven Systems
Can we Solve the Mystery of Producing a Stationary Self-Sustained Fusion Fire??

Galactic Jet - M87

VLBA

SOHO

Crab Nebula

CHANDRA
Confining a Fusion Fire
A Grand Challenge for Science and Technology

Dale Meade
Princeton University

Presented at
Department of Physics
University of Wisconsin, Madison

Fusion is an Outstanding Physics Challenge and is Connected to Other Outstanding Challenges

Ten Outstanding Physics Challenges

• Quantum gravity presents the ultimate challenge to theorists
• Explaining high-T_c superconductors
• Unstable nuclei reveal the need for a complete theory of the nucleus
• Realizing the potential of fusion energy
• Climate prediction is heavy weather
• Turbulence nears a final answer
• Glass physics: still not transparent
• Solar magnetic field poses problems
• Complexity, catastrophe and physics
• Consciousness: the physicists view
Fusion Does Work at Large Size

Why is it so difficult in the lab?
Relevant Reactions for Fusion in the Laboratory

\[\text{D}^+ + \text{D}^+ \rightarrow \text{3He}^{++} (0.82 \text{ MeV}) + \text{n}^0 (2.5 \text{ MeV}) \]

\[\rightarrow \text{T}^+ (1 \text{ MeV}) + \text{p}^+ (3 \text{ MeV}) \]

\[\text{D}^+ + \text{3He}^{++} \rightarrow \text{4He}^{++} (3.6 \text{ MeV}) + \text{p}^+ (14.7 \text{ MeV}) \]

\[\text{D}^+ + \text{T}^+ \rightarrow \text{4He}^{++} (3.5 \text{ MeV}) + \text{n}^0 (14.1 \text{ MeV}) \]

\[\text{Li}^6 + \text{n} \rightarrow \text{4He} (2.1 \text{ MeV}) + \text{T} (2.7 \text{ MeV}) \]
Fusion Cross Sections and Reaction Rates

For Example:

\[P_{DT} = n_D n_T \langle \sigma v \rangle (U_\alpha + U_n) \]

\[= 5.6 \times 10^{-7} \langle \sigma v \rangle n_D n_T \text{ watts m}^{-3}, \text{ note: } \langle \sigma v \rangle \sim T^2 \text{ @ 10 keV} \]
The Grand Challenge, Science and Technology for Fusion

Key Plasma Performance Metrics
- Fusion Gain (Q_p)
- Fusion Energy Density
- Duty Cycle/Repetition Rate

Key Engineering Metrics
- First Wall Lifetime
- Availability/Reliability
- Environment and Safety
- System Costs
There are Three Principal Fusion Concepts

Spherical Inertial
- gravitational
- transient compression
- drive (laser-D/I, beam)
- radial profile
- time profile
- electrostatic

Toroidal Magnetic
- surface of helical B lines
- twist of helix
- twist profile
- plasma profile
- toroidal symmetry

Reactivity Enhancement
- muon catalysis
- polarized nuclei
- others?
Plasma Requirements for a Burning Plasma

Power Balance

\[P_{\text{aux-heat}} + n^2 \langle \sigma v \rangle U_\alpha V_p/4 - C_B T^{1/2} n_e^2 V_p = 3nkTV_p/\tau_E + d(3nkTV_p)/dt \]

where: \(n_D = n_T = n_e/2 = n/2 \), \(n^2 \langle \sigma v \rangle U_\alpha V_p/4 = P_\alpha \) is the alpha heating power, \(C_B T^{1/2} n_e^2 V_p \) is the radiation loss, \(W_p = 3nkTV_p \) and \(\tau_E = W_p/(P_{\text{aux-heat}} - dW_p/dt) \) is the energy confinement time.

In Steady-state:

\[n\tau_E = \frac{3kT}{\langle \sigma v \rangle U_\alpha (Q+5)/4Q - C_B T^{1/2}} \]

where \(Q = P_{\text{fusion}}/P_{\text{aux-heat}} \)

\(Q = 1 \) is Plasma Breakeven, \(Q = \infty \) is Plasma Ignition
Status of Laboratory Fusion Experiments

LATWSON PARAMETER, n_i E (10^{20} m^{-3} s^{-1})

CENTRAL ION TEMPERATURE, T_i (0) (keV)

Legend
- Red circle: D-T
- Green circle: D-D
- Blue circle: Nova direct drive
- Pink circle: Nova indirect drive
- Orange circle: Laser D-T

Q_{DT}=1

Moderate Density Magnetic

Higher Density Magnetic

Igniter, CIT, FIRE

Omega-U direct drive
Comparison of Typical Plasma Parameters for Inertial and Magnetic Fusion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inertial</th>
<th>Magnetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i (keV)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>n (m(^{-3}))</td>
<td>6×10^{30}</td>
<td>3×10^{20}</td>
</tr>
<tr>
<td>τ_E (sec)</td>
<td>10^{-10}</td>
<td>2</td>
</tr>
<tr>
<td>radius (m)</td>
<td>10^{-4}</td>
<td>1</td>
</tr>
</tbody>
</table>
Why is Confinement a Challenge for Magnetic Fusion?

A D-T reactor at a fuel density of 10^{20} m^{-3} requires

$$\tau_E \sim 1 \text{ second}, \quad T_i \sim 10 \text{ keV}$$

$$T_e \sim 10 \text{ keV} \quad v_{te} \sim 6 \times 10^7 \text{ m/s}$$

Assume a container with

radius $\sim 1 \text{ m}$ (typical radius for a magnetic bottle)

Then the number of bounces

$$N \sim \frac{v_{te}}{r} \sim 6 \times 10^7$$

~ 30 coulomb collisions under typical conditions
Toroidal Magnetic Chamber (Tokamak)

Axisymmetric Magnetic Configuration
- axial current, I_T, produces toroidal magnetic field, B_T
- toroidal current, I_p, produces vector potential, A_ϕ and poloidal field, B_p

Axisymmetry ensures that:
- magnetic field lines lie in nested magnetic surfaces given by $\psi = 2\pi RA_\phi$
- charged particles are confined to within δ of magnetic surface due to conservation of canonical angular momentum

$$2mH = p_R^2 + p_Z^2 + \left(p_\phi - eRA_\phi \right)^2 + e\Phi(R,Z) \quad \frac{\delta}{R^2} \sim \frac{mv}{eB_p}$$

$q = \text{field line cycles long way (toroidally)}$ for one cycle short way (poloidally)
$q > 1$ tokamak configuration

I_p produced by inductive drive or pressure driven bootstrap current.
Toroidal Asymmetry can cause plasma loss

- small magnetic field perturbations can have large effect at resonant surfaces
- particle collisions (would allow present tokamaks to be near ignition)
- plasma instabilities (main limit in present fusion devices)
Tokamak Fusion Test Reactor
Tokamak Fusion Test Reactor
Comprehensive Diagnostic Systems have been Developed to Investigate Fusion Plasmas

Spatially and Time Resolved
— Typically ~50 diagnostic measurements

- Equilibrium magnetics
- Core profile diagnostics $n_e, n_i, T_i, T_e, Z_{\text{eff}}, Z_i, v$
- Internal magnetic field profile, B_θ, q
- Core and edge turbulence \tilde{n}_e, \tilde{T}_e
- Edge and divertor $T_e, n_e, Z_e, \text{radiation, neutral pressure}$
Plasma Instabilities Limit Fusion Plasma Confinement

Small-Scale Electrostatic Turbulence (fluctuating electric field, δE)

\[\mathbf{v} = \frac{\delta \mathbf{E} \times \mathbf{B}}{B^2}, \]
ions and electrons both drift across the magnetic field preserving charge neutrality

\[\lambda > \rho_i \]
instability wavelength \sim ion gyro-radius

\[\Delta \sim v \tau_{\text{correlation}} \]
random walk step size

Small-Scale Magnetic Turbulence (fluctuating magnetic field, δB)

\[\mathbf{v} = v_{\text{thermal}} \frac{\delta \mathbf{B}}{B}, \]
mainly loss of electron energy

Large-Scale Large-Amplitude Magnetic Instability

plasma pressure sufficient to distort even tear the magnetic field, similar to solar flares. Can cause total loss of plasma in a tokamak.
FUSION POWER IS DETERMINED BY MACROSCOPIC STABILITY

- Plasma stability is largely determined by

$$\beta \equiv \frac{2nT}{B^2 / 2\mu_0}$$

- Fusion power

$$p_{fus} = E_{fus} n_d n_t \langle \sigma_{fus} v \rangle \sim n^2 T^2 \sim \beta^2 B^4$$

- Denser, hotter plasma makes more fusion.
Simulation of a Plasma Disruption Driven by High Plasma Pressure

Nonlinear 3-D Fluid Computation
WAVE-PARTICLE INTERACTIONS ARE CRITICAL FOR PLASMA SUSTAINMENT

• Plasma heating and current-drive
 - By beams of energetic neutral atoms
 - By radio-frequency waves

• Plasma self-heating by α particles

• Discovery of the self-driven “bootstrap” plasma current has revolutionized toroidal systems.
Neoclassical Theory Prediction of Self-Driven Plasma Current Confirmed*

- Plasma surface voltage is well modeled by including beam-driven and self-driven (bootstrap) currents.
- Enabled design of advanced tokamak, spherical torus, and stellarator.

* seminal experiments were done on the Wisconsin Levitated Octupole
Plasma Science Areas in Magnetic Fusion

- Macroscopic Stability
- Wave-particle Interactions
- Transport and Microturbulence
- Plasma-wall Interactions
- Self-heated Plasmas
Wind Tunnel Experiments on Plasma Confinement

Dimensionless Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_c \tau$</td>
<td>$\rho^* = \rho/a$</td>
</tr>
<tr>
<td>$\nu^* = \nu_c/\nu_b$</td>
<td>β</td>
</tr>
</tbody>
</table>

Similarity Parameter

$B R^{5/4}$

Kadomtsev, 1975

$B \tau_{Eth} \sim \rho^{*2.88} \beta^{-0.69} \nu^*^{-0.08}$
Measured Transport is Much Larger than Neoclassical Transport

\[\chi \equiv - \frac{q \perp}{n \nabla T} \]

- Wrong profile, scaling with B and collisionality
- Better than no magnetic field by \(10^6\)
- Additional processes: turbulence
Localized Turbulence Measured via BES

- Beam Emission Spectroscopy: measure local density turbulence from fluctuations in light emitted from injected neutral H\(^0\) beam:

BES Viewing Geometry

- **DIII-D Tokamak Top View**
 - Core Channels
 - Edge Channels
 - Viewport (105°)

Poloidal Cross Section

- **Major Radius, R (m)**
- **Z (m)**

Expanded View

- Neutral Beam Source (150° Beamline)
Reconstruction of Spectral Data Showing Turbulent Eddies in TFTR

- $\delta n/n \sim 0.1 \%$, $\delta T_i/T_i \sim 3-4 \delta n/n$, $\lambda \gg \rho_i$, $\lambda_{\text{radial}} \gg \lambda_{\text{poloidal}}$
- Consistent with simulations of ion temperature gradient (ITG) instabilities
Turbulent Fluctuations Suppressed When \(E \times B\) Shearing Rate Exceeds Maximum Linear Growth Rate of Instabilities

Gyrokinetic Simulations
- Turbulent eddies disrupted by strongly sheared plasma flow

Experiment
- Bursts of fluctuations are suppressed when \(E \times B\) shearing rate exceeds growth rate of most unstable mode

Without Flow

With Flow

E. Mazzucato *et al*, PRL 77 (1996) 3145

W. Lee, Z. Lin, E. Mazzucato, E. Synakowski, M. Beer
Physics Requirements for Next Step Experiments

Study Physics of Fusion Plasmas (transport, pressure limits, etc.)

Same plasma physics if $\rho^* = \rho/a$, $\nu^* = \nu_c/\nu_b$ and β are equal

Requires $BR^{5/4}$ to be equal to that of a fusion plasma

Study Physics of Burning Plasmas (self heating, fast particle stability, etc)

Alpha heating dominant, $f_\alpha = P_\alpha/P_{\text{heat}} = Q/(Q+5)$

$Q = \text{function of } n\tau_E T$, e.g., Lawson diagram

$n\tau_E T = B \times \text{function}(\rho^*, \nu^*, \beta)$ is true in general

$n\tau_E T = B \times (BR^{5/4})$, if τ_E is given by ITER98H empirical scaling at fixed beta

Alpha particle confinement requires $Ip(R/a) \geq 9$, $Ip(R/a) \sim BR$
Magnetic Fusion Pathways to Self-Heating

Central Ion Temperature, T_i (0) (keV)

Lawson Parameter, $n_i E$ ($10^{20} \text{m}^{-3} \text{s}$)

Self-Heated Regime (Ignition)

Higher Density Path

Moderate Density Path

Legend
- Red: D-T
- Green: D-D

JET, TFTR, DIII-D, JT-60U, PLT, TFR, T3, ATC, JT-60U, JT-60U, TFTR, TFTR, TFTR, ALCC, JET, JT-60U, DIII-D, JT-60U, TFR, TFR, PLT, T3, ATC

Q_{DT}=1
High Energy Physics
Accelerators Enable Discovery

HEP facilities plotted by discovery reach in mass vs. year

Also shown are some important discoveries and the expected range for the Higgs

Wesley Smith, U. Wisconsin
October, 1999
International Thermonuclear Experimental Reactor (ITER)

Parties

US (left in 1998)

Japan

Europe

Russia

\[P_{\text{fusion}} \approx 1,500 \text{ MW} \]

for 1,000 seconds

Cost \(\approx \$10 \text{ B} \)

Japan, Europe and Russia are continuing to work on a reduced size version with a goal of reducing the cost to \(\approx \$5 \text{B} \).

Demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes.
The Rosetta Stone for Fusion

<table>
<thead>
<tr>
<th></th>
<th>Fusion Energy</th>
<th>Fusion Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasma physics</td>
<td>$n\tau_{ET}$</td>
<td>$\rho^, \nu^, \beta$ (BR$^{5/4}$)</td>
</tr>
<tr>
<td>burning physics</td>
<td>$Q = \frac{P_{\text{fus}}}{P_{\text{aux-heat}}}$</td>
<td>$f_\alpha = \frac{P_\alpha}{(P_{\text{aux-heat}} + P_\alpha)}$</td>
</tr>
<tr>
<td>time</td>
<td>s, min, hr</td>
<td>$\tau_E, \tau_{\text{skin}}, \text{etc}$</td>
</tr>
<tr>
<td>flexibility</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>availability</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>technology</td>
<td>nuclear</td>
<td>enabling</td>
</tr>
</tbody>
</table>

Fusion Science and Fusion Energy have different languages, metrics, and missions.
Fusion Ignition Research Experiment (FIRE)

Design Goals

- \(R = 2.0 \text{ m}, \ a = 0.525 \text{ m} \)
- \(B = 10 \text{ T}, \quad \text{(12T)*} \)
- \(W_{\text{mag}} = 3.8 \text{ GJ}, \quad \text{(5.5 GJ)*} \)
- \(I_p = 6.5 \text{ MA}, \quad \text{(7.7 MA)*} \)
- \(P_{\text{alpha}} > P_{\text{aux}}, \ P_{\text{fusion}} \sim 220 \text{ MW} \)
- \(Q \sim 10, \quad \tau_E \sim 0.55 \text{s} \)
- \(\text{Burn Time} \sim 20 \text{s} \quad \text{(12s)*} \)
- \(\text{Tokamak Cost} \leq \$0.3\text{B} \)
- \(\text{Base Project Cost} \leq \$1\text{B} \)

* Higher Field Option

Attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive MFE systems.
1 1/2 -D Simulation* of Burn Control in FIRE

* The Tokamak Simulation Code (TSC) is one of several plasma simulation codes. [Click here http://w3.pppl.gov/topdac/]
Concluding Remarks

• The capability now exists to produce and control fusion plasmas for detailed investigation in the laboratory. However, fusion reactors based on the present state of knowledge are large and innovations are needed for an attractive reactor concept.

• Recent developments in plasma diagnostics and computer simulation of three-dimensional non-linear phenomena now allow detailed comparison of theory and experiment.

• New insight into the physical processes causing plasma transport could lead to an advanced toroidal configuration that would have a significant impact on the attractiveness of magnetic fusion.

• The FIRE compact high field tokamak could address many of the generic fusion science issues including: self-heated plasma physics, many of the long pulse advanced tokamak issues and could begin the study of self-heated self-organized plasmas in a $1B class experimental facility.

http://fire.pppl.gov
Laboratories to Explore, Explain and Expand the Frontiers of Science

CHANDRA

VLBA

HST

NIF

FIRE

SNS

CHANDRA
FIRE can help Solve the Mystery of Producing a Stationary Self-Sustained Fusion Fire.