A Thrust for Integration of High-Performance Steady-State Burning-Plasma Behavior Relevant to Demo

> Dale Meade Fusion Innovation Research and Energy® Princeton, NJ United States of America

Theme I&II ReNeW Workshop March 23-27, 2009 General Atomics, San Diego, CA

Fusion Research Themes (FESAC)

- Theme A Creating a High-Performance Steady-State Burning Plasma (a heat source from magnetic fusion)
- Theme B Taming the Plasma Materials Interface (interface between heat source and furnace wall, and extracting plasma exhaust power)
- Theme C Harnessing the Power of Fusion (extracting neutron power, breeding tritium, remote handling, safety/environment)
- These themes follow a systems or process based approach, sometimes called Holistic approach to the R&D of complex systems eg space craft.
- They form a natural overlapping sequence

Theme A
Theme B
Theme C

Key Questions related to the Physics of a Demo Plasma

- A Demo plasma with high fusion gain, high neutron wall loading, high bootstrap fraction for efficient steady state and high power density plasma exhaust is a highly integrated plasma system. Some questions:
 - Is good confinement compatible with P_{α} defined profiles?
 - Does transport depend on non-linearly on the pressure profile?
 - Is high beta compatible with P_{α} defined profiles?
 - Does the plasma evolve to a stable self-organized state?
 - Will alpha heating drive a self-heating sawtooth?
 - Can the plasma be sustained and controlled with low power?
 - What are the optimum temperature and density regimes for simultaneous high Q, efficient CD and long life divertor operation?
 - Many more.....
- Can we quantify the gaps between today, ITER and a Demo?

High-Performance Steady-State Burning-Plasma Issues

- **High Fusion Gain** attain good confinement with profiles defined by alpha heating($P_{\alpha}/P_{ext} = Q/5$), possible non-linear dependence of transport on gradients, coupled to edge plasma by pedestal, optimum temperature for fusion ~ 15 keV and high density but efficient current drive favors higher T ~ 30 keV and lower density.
- Sustainment (100% NI) produce large bootstrap current with pressure profiles defined by alpha heating and residual current driven efficiently by low power $P_{cd} \le 5P_{\alpha}/Q$.
- **High Fusion Power Density** ($\beta^2 B^4 < \sigma v > /T^2$) to provide high neutron wall loading. Can near optimum β be attained for alpha-defined profiles?
- **Plasma Control** ($P_{cd} + P_{cont} = 5P_{\alpha}/Q$) maintain plasma control (esp. disruptions) with low power typically < 0.15 P_{α} . Will a burning plasma evolve to a self-organized state with good confinement, high bootstrap and high β ?
- **Exhaust Power Density** can high exhaust power densities be handled while maintaining edge plasma for high Q and efficient CD with long PFC lifetime?
- **Self- Conditioned PFCs** will the PFCs self-condition that is consistent with high Q and β , and long PFC lifetime?

High-Performance Steady-State Burning-Plasma Metrics and Gaps

Table I. Individual Issue (Metric)	Today*	ITER	ARIES-	ARIES-	<gap></gap>
	$(>10\tau_{\rm E})$		Ι	AT	IT to AR
Fusion Gain (Q)	< 0.2	5	20	50	7
Self-heating (%)	4	50	80	91	1.7
Sustainment (100% NI)** (P_{cd}/P_{α})	>25	1	0.25	0.1	6
Current Drive fraction $(1-f_{bs})$ (%)	~30	~50	32	9	2.5
Neutron Wall Loading (MWm ⁻²)	0.1	0.5	2.5	3.3	6
Plasma Pressure (atm)	1.6	2.5	10	10	4
Fusion Power density (MWm ⁻³)	0.3	0.5	4	4.7	8
Plasma Control* (P_{cont}/P_{α})	>25	1	0.25	0.1	6
Exhaust Power Density (P _{heat} /A _{ps} (MWm ⁻²)	0.85	0.2	1	1	5
Self-Condition PFCs & FW $f(t_{pulse}, T, \phi,$	No	?	Yes	Yes	?

* Not all simultaneous

** Current Drive Power + Plasma Control Power = $5 P_{\alpha}/Q$

Assumes ITER will be upgraded with addition of Lower Hybrid current drive for Scenario 4.

- ARIES-I And ARIES-AT span the range of a possible DEMO.
- Individual gaps between ITER (scenario 4) and ARIES range between 1.7 and 10

Description of integration issues

High-Performance Steady-State Burning-Plasma **Integration Issue Gaps (an example)**

Integrate Fusion Gain, Sustainment and Exhaust Power Density							
Table I. Individual Issue (Metric)	Today*	ITER	ARIES-	ARIES-	<gap></gap>		
	$(>10\tau_{\rm E})$		Ι	AT	IT to AR		
Fusion Gain (Q)	< 0.2	5	20	50	7		
Self-heating (%)	4	50	80	91	1.7		
Sustainment (100% NI)** (P_{cd}/P_{α})	>25	1	0.25	0.1	6		
Current Drive fraction $(1-f_{bs})$ (%)	~30	~50	32	9	2.5		
Neutron Wall Loading (MWm ⁻²)	0.1	0.5	2.5	3.3	6		
Plasma Pressure (atm)	1.6	2.5	10	10	4		
Fusion Power density (MWm ⁻³)	0.3	0.5	4	4.7	8		
Plasma Control* (P_{cont}/P_{α})	>25	1	0.25	0.1	6		
Exhaust Power Density (P _{heat} /A _{ps}	0.85	0.2	1	1	5		
(MWm ⁻²)							
Self-Condition PFCs & FW $f(t_{pulse}, T, \phi,$	No	?	Yes	Yes	?		

* Not all simultaneous

** Current Drive Power + Plasma Control Power = $5 P_{\alpha}/Q$

Assumes ITER will be upgraded with addition of Lower Hybrid current drive for Scenario 4.

- The individual gaps are taken to be independent, therefore the Integration Gap is the product of individual gaps.
- The Integration Gap for Fusion Gain, Sustainment and Exhaust Power density is ≈ 200

A Thrust for Integration of High-Performance Steady-State Burning-Plasma Behavior Relevant to Demo

Key Objectives of Thrust

- Determine and understand conditions for attaining a Demo-relevant burning plasma.
- Determine and understand conditions for sustaining and controlling a Demo-relevant plasma that is dominately self-heated, with dominately self-driven currents and dominately self-conditioned PFCs.
- Test and Refine Predictive Modeling on a Demo relevant plasma.
- Together with ITER, and other Thrusts provide the knowledge basis for the design of a tokamak based Demo.

Strategy for Integrating Demo Relevant Plasma Issues

- Aggressively exploit simulation on existing DD facilities and computer models
 - target specific objectives/tasks with SC action teams
 - exploit Asian superconducting facilities
 - simulate burning plasma phenomena to the extent possible
- Begin a study of the Fusion Plasma Integration Facility that would address the integration issues of a Demo-relevant High-Performance Steady-State Burning plasma and serve as a D-T satellite tokamak for ITER.
 - refine key objectives and research requirements
 - define general characteristics of possible facilities (iterate with above)
 - since the cost will be significant, start with a plan that has a sequence of upgrades that spreads the cost and allows success to bootstrap funding for the next stage or objective.
 - begin the pre-conceptual design of a facility(s) within a year to assess technical feasibility and cost range.

Note: Not building a major Burning Plasma facility is very expensive

Since 1997 US MFE has spent \$3.4B (≈ \$4B in FY08 \$)

Since 1989 US MFE has spent \$6B (≈ \$7.5B in FY08 \$)