A Strategy for Resolving the Problems of Plasma-Material Interaction for FNSF

R. Goldston, B. LaBombard, D. Whyte, M. Zarnstorff

Scrape-off Width Does not Scale with R

Parallel heat flux in a 2.5 GW_{th}, Q = 25 ITER ~ 18.5 GW/m² With no spreading or dissipation, 2° incidence ⇒ 650 MW/m² Transient heat fluxes are similarly problematic (Maingi, Thursday)

Neutrons and PMI can First be Studied in Parallel

- Mean-free path for neutrons ~ 10cm
 PMI interactions mainly in first 1 μm
 - 10⁻⁵ of neutron interactions in PMI zone
- Ions recycle > 10x, nuclear burn-up < 1/10
 - Ion interactions in PMI zone > 10^7 x neutron interactions
- Neutrons do affect bulk material properties
 - Thermal conductivity, T retention, strength/ductility, swelling
 - Surface is affected as bulk material is destroyed (C)

• Bulk property changes affect first 1 μm indirectly

- Change in thermal conductivity mimicked by adjusting cooling
- Bulk D/T retention has no significant effect on recycling
- Strength/ductility changes affect response to thermal shock

• Neutron & PMI studies can first proceed in parallel

Material selection depends on success with both neutrons & PMI

New U.S. Facilities for PMI/PFC Strategy

Strong experimental and theoretical surface science program needed in parallel

Liquid Metal (LM) PMI/PFC Test Facility

• Liquid lithium can handle high heat fluxes

• Russian e-beam tests: 50 MW/m², Plasma focus: 60 MJ/m² in 1 μsec

Development is required in specialized facility

- Physics of radiative & vapor shielding, technology of LM feed & recapture
- Gas (not water!) cooling, robust to LM coating
- See Maingi, Jaworski & Allain on LM initiative (Thursday)

High Heat Flux Confinement Device

Requirements

- High parallel heat flux ~ PB/R
- High poloidal heat flux ~ PB_{θ}/R
- High upstream pressure
 - $\left(nT
 ight)_{sep} \propto rac{f_{_{GW}}I_{_{p}}}{a^{^{2}}} \left(rac{BL_{\parallel}P_{_{SOL}}}{R\lambda_{_{q}}B_{_{p}}}
 ight)^{2/3}$
- Poloidal field flexibility to test advanced divertor concepts
- Tightly baffled divertor chamber
- Ability to accommodate a range of metallic plasma-facing materials
- Pulse length > bulk plasma,
 SOL & PFC surface-heating times
- Extensive PMI diagnostics

ADX meets requirements

ADX Designed to Test Inner-Wall RF Launch

PMI key issue for RF launching structures

Test LH & ICRF in low-PMI launch position. Test efficient current drive for FNSF & beyond. Provide high power for ADX.

ADX Divertor Well Suited for Liquid Metal Tests

Condensation

Multiple divertor geometries & materials can be tested. Small size, short pulse (low activity) ⇒ quick changes
EAST would provide long-pulse, water-cooled operation at lower PB/R, upstream pressure and flexibility.
NSTX-U plans to perform complementary LM studies.

Final Stages of PMI/PFC Strategy

Full tests including steady cooling, wall material migration and
T retention require high PB/R + hot walls + high duty factor.
Can decide later if this is stand-alone or first phase of FNSF.
FNSF integrates results from Neutron + PMI facilities.

Conclusions

PMI problems are worse than we thought even 3 years ago

- Both steady and transient heat fluxes
- Neutrons can be addressed in parallel w/PMI
 - Pass both tests, then bring them together for FNSF
- Liquid metal PMI/PFC test facility needed
 - Complements solid PFC test stands
- ADX for high power, magnetic flexibility, baffled divertor
 - World-leading parallel heat flux, upstream pressure
 - Excellent test bed for PMI/PFC, inside launch LH & ICRF
- High power + hot walls + high duty factor still needed
 - Can decide later if this is standalone device or first phase of FNSF

If ADX moves forward, PPPL would partner with MIT, contributing to engineering, diagnostic and auxiliary heating development, and playing a major role in the scientific research team.

Back-Up Slides

ITER PMI Technologies do Not Extrapolate

Requirements << Demo

- Heat and particle fluxes << Demo
 - Down by factor ~ 4
- Surface Temperatures << Demo
 - Divertor: 200C 1200C (at strike point)
 - First wall: 150C 450C (at peak heat flux)
- Duty factor << Demo
 - Few % vs. ~75%

→ Technologies much different from Demo

- W divertor with CuCrZr/water cooling
 - Can handle heat flux up to 10 20 MW/m²
 - Demo W with He cooling and neutrons $\sim 5~MW/m^2$
- Be first wall not considered in reactor design
 - Too low heat flux and transient energy handling capacity

FESAC-SP Whyte

Whyte to Panel, June 2014

Machine Parameter Comparison

	MAST	NSTX -U	DIII-D	EAST	KSTAR	AUG	JET	JT- 60SA	C-MOD	ADX	ITER	ACT1	ACT2
$\frac{B_T[T]}{I_n[MA]}$	0.84 2	1 2	2.2 1.5	3.5 1.5	3.5 2	3.1 1.6	3.5 4.8	2.3 5.5	5.4 1.3	<mark>6.5</mark> 1.5	<mark>5.3</mark> 15	<mark>6</mark> 11	<mark>8.75</mark> 14
a [m] R [m]	0.65 0.85	0.62 0.93	0.6 1.75	0.45 1.85	0.5 1.8	0.6 1.65	1.25 3	1.2 3	0.22 0.67	0.2 0.73	2 6.2	1.6 6.25	2.4 9.8
P _{tot} (1) [MW]	7.5- 12.5	8- 19	23- 39	10- 36	14- 36	27	38	41	8	14	150	405	630
$\frac{P_{tot}/S (2)}{[MW/m^2]}$	0.18- 0.3	0.18- 0.44	0.36- 0.60	0.23- 0.82	0.3- 0.76	0.52	0.20	0.19	1.0	1.7	0.22	0.64	0.41
P _{tot} B/R (3) [MW T/m]	8- 13	9- 22	30- 50	19- 69	28- 71	51	45	33	65	126	131	390	570
$ \begin{array}{c} \lambda_q / \lambda_q^{ADX} (4) \\ (\lambda_q \sim Eich) \end{array} $	4.7	4.2	3.5	2.0	1.8	2.9	2.3	2.1	1.3	1	1.2	1.3	1.6
$q_{\parallel}/q_{\parallel}^{ADX}(5)$ $(\lambda_{q} \sim Eich)$	0.02- 0.04	0.03- 0.07	0.21- 0.34	0.17- 0.62	0.22- 0.56	0.33	0.24	0.18	0.45	1	0.82	3.1	4.5
$ \begin{array}{c} q_{\parallel}/q_{\parallel}^{ADX}(\boldsymbol{6}) \\ (\lambda_q \sim R) \end{array} $	0.03- 0.06	0.04- 0.1	0.24- 0.40	0.15- 0.55	0.16- 0.4	0.32	0.10	0.06	0.55	1	0.10	0.52	0.6

Table 5.1 – ADX parameters compared to world tokamaks.

- (1) Total source power from all heating systems, <u>range shows planned or proposed upgrades to facility</u>. In practice, the total input power is restricted by operational beta limits – not accounted for here.
- (2) Maximum plasma power density flowing through last-closed flux surface (assuming no core radiation).
- (3) Figure of merit that sets the heat flux density entering divertor $(q_{//})$, based on λ_q scaling as $1/B_{pol}$.
- (4) Heat flux channel width (λ_q) normalized to that in ADX, based on multi-machine scaling [8].
- (5) SOL parallel heat flux normalized to that in ADX, based on multi-machine scaling of λ_q .
- (6) SOL parallel heat flux normalized to that in ADX, based on λ_q scaling linearly with major radius.

LaBombard to Panel, June 2014

Neutron Effects are Separable

Neutron irradiation	Concequences for PMI	
damage		
Thermal conductivity	Temperature operation	
	window, less tolerance to	
	transient heat loads,	
	erosion yield	
Chemical composition	Hydrogen retention,	
(transmutation)	thermal conductivity	
	indirectly (see above)	
Interstitials, vacancies,	Hydrogen retention	
dislocations, voids		
Micro-structural changes	Tolerance in PFC	
(swelling)	alignment will become	
	larger, hence power	
	handling capability lower	
DBTT	Reduced temperature	
	operation window	
He, H embrittlement	Erosion and dust	(No argument for this
	production will be	provided in text.)
	enhanced	
Synergies of micro-	To be identified	
structural changes between		
neutron and plasma		
irradiation		

TABLE I	. Irradiation	damage and	consequences	for PMI
---------	---------------	------------	--------------	---------

J. Rapp et al., Fusion Science & Technology, August 2013

Neutron Effects are Separable

Wirth to Panel, June 2014

Irradiation damage makes no difference in the morphology of the nano-tendrils formed on the surface

Fuzz region 20 dpa/year = 0.6×10^{-6} dpa/s 1200 Peak damage 800 keV O+ 1000 10^{-3} dpa/s 10⁻⁶ dpa/s 800 600 400 200 0 10 mm 0 200 400 600 800 1000 G Depth (nm) mm Ion beam **Reactor neutron damage** simulated by energetic heavy-ion beam exposure Tungsten simultaneous with sample He plasma exposure

Wright, APS 2013

100 nm

PSI Science Center

Demo will Require Innovation Li Vapor-Box Divertor?

- Assume a device ~ size of ITER with
 P_{fus} = 2500 MW and Q = 25
- 4x higher loss power than ITER \Rightarrow 18.5 GW/m²
- For 2° field line angle, 10 MW/m², *f*_{power} > 98% (!!)
- For *n_{sep}* ~ 1.5x ITER's ~ 5 10¹⁹/m³, *p_{sep}* ~ 6300 Pa
- Pressure balance achieved by C-X on H^o and Li^o + elastic collisions with H^o and Li^o
- 1/2 of pressure can be balanced by Li vapor in evaporation/condensation equilibrium with 950°C surface (Jaworski PSI 2014)
- H⁺ MFP = 5mm @ 100 eV, 250mm @ 5 keV
- Vapor must be well confined to divertor chamber, by a combination of geometrical design & plasma flow.
- Easier with a condensing vapor than with a gas.

Key facilities will address science issues and enable integrated demonstration within 10 years

		Confinement Devices			
Dartial contribution to tonic		High		High-power,	
Maior contribution to topic		Power	Long	high duty-	
Full resolution of tonic	Test	(NSTX-U	Pulse	factor, hot	
i un resolution or topic	Stands	ADX?)	(EAST)	walls	
Issues					
Power and Momentum Dissipation (PMI)	Linear				
Component technology (PFC)					
Steady power handling	Linear				
Free-surface stability (toroidal)	Fast-flow				
			·		

10-year goal: Competitive PFM with W

- Dedicated test stands provide fundamental physics and engineering demonstrations prior to implementation on confinement device
- Current long-pulse tokamaks do not approach DEMO parallel heat-fluxes

Modest investment needed to address facility requirements

- Dedicated linear device with integrated liquid lithium loop can address physics and technology goals
 - Arc-source proposed to provide divertorrelevant heat fluxes
 - Material transport, recapture requires integrated lithium loop
 - Extensive water cooling incompatible with lithium PFCs
- Dedicated toroidal devices can demonstration basic stability
 - Similarity experiments with GaInSn could be restarted quickly
 - Dedicated lithium facilities will address lowdensity fluid and hydrogen cycle aspects directly

Jaworski – Liquid metal PSI science and component development – FESAC Meeting, Washington DC – July 8-10, 2014

HIDRA: Toroidal Technology Test Bench

 Can test complete axisymmetric toroidal liquid-metal flow in a tokamak. (40 coils: B_T up to 1 T for 3 minutes or 0.3 T for 30 minutes, polloidal coils, 0.44 Volt-sec transformer)

- Can test transient behavior during start-up, plasmainduced eddy currents, runaway electrons, and ramp down.
- Can test first wall heat flux levels and demonstration of steady state (30 minute) first wall flowing liquid metal systems.

Center for Plasma-Material Interactions

http://cpmi.uiuc.edu

 Can test low-recycling feasibility. (D absorption by lithium, liquid metal flow through field gradients, D distillation, D re-introduction)

Gap #1: Free-surface flowing liquid stability in fusion reactor environments

Theme: Horizontal layer of dense fluid over less dense fluid is unstable (drips): Rayleigh-Taylor instability

$$\begin{split} & \underset{\delta}{\text{iquid film}} - \rho_2 \mu_{-\gamma} & \\ R \\ & \\ \delta &= h_0 / R \ll 1 \end{split}$$

Study dynamics on the underside of a curved surface (model of a tokamak):

Approach: Experiments with model systems, numerics and theory

Finding: Film thickness smaller than a critical value is STABLE –fluid slides along the wall towards the bottom faster than any instability can develop

Next step: include MHD effects

 $h < \frac{8\gamma}{\rho g R}$

22

Kim, Stone, to be published

Center for Plasma-Material Interactions

Materials development of hierarchical materials (*e.g.* porous substrates) as platforms for LM PFCs

Nano- to micro-porous refractory metal substrates (Allain et al.)