Initiatives in Non-Solenoidal Startup and Edge Stability Dynamics at Near-Unity Aspect Ratio

R. J. Fonck for the PEGASUS Group
University of Wisconsin-Madison

Presented to Public Meeting of the 2014 FESAC Strategic Planning Subpanel
Gaithersburg, MD June 3, 2014
July 8, 2014
U.S. ST Goal: Accelerate Fusion Development

- **Advance ST as Fusion Nuclear Science Facility**
 - NSTX-U: physics + scenario basis for FNSF-ST (also ST DEMO)
 - PEGASUS-U, NSTX-U: non-solenoidal start-up: helicity injection, EBW, +…

- **Develop solutions for plasma-material interface**
 - LTX, NSTX-U: liquid Li for very high confinement, liquid metal PFCs
 - NSTX-U: novel divertors: snowflake/X, detachment, vapor shielding

- **Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond**
 - PEGASUS-U, NSTX-U: high β, toroidicity, MHD / transport validation, ELMs
 - NSTX-U: non-linear Alfvénic modes, electromagnetic turbulence
Tokamak Physics at Low A → 1: Advancing Fusion Energy Sciences

- **PEGASUS: Ultra-Low-A ST**
 - \(R_0 \leq 0.40 \) m, \(a \sim 0.35 \) m, \(B_{TF} \sim 0.15 \) T,
 - \(I_p \leq 0.25 \) MA, \(\Delta t_{pulse} \sim 25 \) ms
 - Grad student operated and maintained

- Non-solenoidal startup
 - Local helicity injection

- Advanced Tokamak Physics
 - ELM / H-mode / Neoclassical

- Physics of High \(I_p/I_{TF} \)
 - Toroidicity limits of stability
PEGASUS-U Initiative: Advancing Non-Solenoidal Startup and AT Physics

• Mission
 – Physics and technology of LHI
 • For NSTX-U and beyond (FNSF)
 – Nonlinear ELM dynamics, H-mode physics
 – Tokamak stability limits: A~1 high β_T regime

• Facility enhancements
 – New centerstack assembly
 • B_{TF} increases 5x
 • $\Delta t_{\text{pulse}} \sim 100$ msec
 • V-sec increases 6x (solenoid from PPPL)
 • Improved separatrix operation
 – NSTX-U relevant LHI injector arrays
 • Helicity input rate increases 2x
 – Diagnostics: multipoint TS; CHERS via DNB
Local Helicity Injection (LHI) Uses Strong Current Sources in SOL to Inject Helicity & Drive I_p

- Unstable streams relax to “tokamak”
 - Taylor relaxation, helicity conservation limit I_p
 - To date: $I_p \sim 0.18$ MA with $I_{\text{inj}} \sim 6$ kA
 - Extensive current source technology development

- Approaching predictive $I_p(t)$ model
 - Energy conservation; lumped parameter model

- Details of LHI dynamics emerging
 - NIMROD: Reconnecting current streams inject axisymmetric current rings into core plasma

- Technique scales to NSTX-U, FNSF
PEGASUS-U Initiative: Develop & Validate LHI-Startup for NSTX-U and Beyond

- Critical physics issues
 - Confinement behavior and helicity dissipation
 - Edge $\lambda=J/B$, J penetration processes
 - Injector geometry optimization

- Technology development
 - Long-pulse, large-area injectors in high B_{TF}

- Models & predictive understanding
 - 0-D Power Balance $I_p(t)$ model
 - NIMROD
 - TSC

“Pagoda-style” injectors sustain $V_{inj} \leq 1.5$ kV, $I_{inj} \sim 2$ kA with no PMI effects within 1-2 cm of LCFS
• Low $B_{TF} \Rightarrow$ very low P_{L-H}
 – With unique diagnostic access

• Ohmic H-mode plasmas
 – $H_{98} \sim 1$; 5-10x predicted P_{L-H}
 – Measured pedestal in $J_{\text{edge}}(R,t)$

• ELM physics studies
 – $J(R,t)$ evolution through ELM collapse
 – Type I: $n = 5-15$; Type III: $n \sim 1$
 • Opposite high-A plasmas
PEGASUS-U Initiative: Nonlinear ELM Studies and H-mode Physics

- $P(r,t), J(r,t), v_\phi(r,t)$ through ELM cycles
 - Nonlinear evolution of magnetic structures

- ELM, H-mode modification and mitigation
 - Vary $J_{\text{edge}}(r)$, modify edge v_ϕ and shear via LHI

- Synergistic studies with BES on NSTX-U, DIII-D
 - Entry point for grad students to large facilities

- Models to test
 - NIMROD
 - BOUT++
 - EPED

Comparison of $J(r,t), N_e(r,t), T_e(r,t)$ on Pegasus to detailed $N_e(r,t)$ on NSTX-U will aid interpretation of BES ELM studies on NSTX-U & DIII-D
• Non-solenoidal startup
 – **PEGASUS-U, NSTX-U LHI program** for ~ 1 MA startup demonstration
 – New non-solenoidal startup studies: Stellarator windings; Iron core, EBW…

• **Current sustainment with LHI** via MHD control
 – Passive or active injector feedback system

• ELM modification and mitigation
 – C-pellet injection for tests of models for ELM-pacing (w/ORNL)

• Neoclassical physics tests
 – J_{BS} model tests: Test Sauter model if sufficient edge pressure achieved

• High β_t plasma studies at $I_p/I_{TF} \geq 3$
Modest Staff and Budgets with Collaborations Enable an Aggressive Program

- **Pegasus-U requires ~ $1.5M/yr**
 - Equipment and supplies funding
 - 2 Scientists; Full-time support staff
 - 1-3 more grad students; undergrad team

- **Present staffing is sub-critical**
 - 1/3 Faculty; 1 scientist
 - 2/3 Engr; 1 tech; 2/3 instrument tech
 - 6 graduate students; 2-4 undergrads

- **Growing collaborations**
 - PPPL: Solenoid; DNB; LHI; Iron core*
 - ORNL: H_α diag.; Pellet pace &/or EBW*
 - U Tokyo: Magnetics probe array
 - DIII-D & NSTX-U: BES programs
 (* = future?)

![Recent PEGASUS Funding History](chart.png)

X = not supported by PEGASUS grant
Primary Areas of Contribution

- **Thrust 16: Develop the spherical torus**
 - Range of V&V activities in parallel with LHI startup, ELM, and high-β studies
 - Further initiatives in new nonsolenoidal startup, sustainment, ELM pacing, etc.

- **Thrust 18: Achieve high performance with minimal field**
 - Stability limits at extreme toroidicity and high \(l_p/l_{TF} (>2) \)

Additional Areas of Contribution

- **Thrust 2: Transient events in burning plasmas**
 - Edge stability studies; nonlinear ELM dynamics

- **Thrust 9: Unfold the physics of boundary-layer plasmas**
 - Pedestal evolution
 - Peeling-ballooning studies and experimental verification of models

- **Thrust 6: Develop predictive models for fusion plasmas**
 - Potential for detailed tests of Sauter neoclassical model

- **Thrust 10: Technology of plasma-surface interactions**
 - Development of LHI injectors for high-performance plasma edge
Studies at A~1 in PEGASUS-U will Advance Fusion Energy Sciences

- Significant progress with non-solenoidal startup of ST
 - Increasing understanding of LHI physics to project towards MA-class startup
 - Developing advanced edge current sources

- Leveraging low-A regime to test edge stability theory
 - Peeling mode characteristics consistent with theory
 - Tests of ELM physics

- Many possibilities for further initiatives
 - e.g., LHI J(R,t) control and H-mode support high-β studies at tokamak limits

- A cost-effective, strong platform for student education in fusion science and technologies