

Physics Modeling of FIRE Edge Plasma

Presented to the NSO PAC

July 20-21, 2000

Presented By M. Ulrickson

> Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

- UEDGE modeling of the edge plasma, T. Rognlien
- Neutral particle modeling, D. Ruzic
- Erosion/redeposition modeling, J. Brooks
- Disruption specification, J. Wesley
- Particle fueling and pumping requirements
- Summary

Operating Scenarios

Case	P _{fusion}	Pheat	Pdivertor	Duration
Baseline	200 MW	60 MW	29 MW	18 s
D-D	5	16	8	214
AT Mode	150	45	22	31
High B⊤	250	75	37	12

UEDGE Modeling

Input parameters

- Power to the divertor 28 MW
- Separatrix density 1.5 x 10²⁰ /m³
- Wall recycling coefficient 1.0
- Three edge transport cases
 - High conductivity $c = 1.5 m^2/s$ D = 1.0 m²/s
 - ITER Baseline $c = 0.5 \text{ m}^2/\text{s}$ $D = 1.0 \text{ m}^2/\text{s}$
 - Bohm like $c = 0.5 \text{ m}^2/\text{s}$ $D = D_{\text{bohm}} + 0.1$

 $-D_{bohm} = T_e/16 eB$

 A case with tilted plates and wall pumping of 10²¹/s and Bohm like transport

UEDGE Modeling Results

Case	Te _m (eV)	l _m (cm)	Te _p (eV)	Ne _p (10 ²¹ /m ³)	Q _p (MW/m ²)	l _p (cm)
Α	106	0.8	1.5	61	5.7	6.5
В	152	0.6	15	44	25	1.8
С	138	0.7	14	43	23	2.3
D	138	0.7	13	52	19	2.5

UEDGE Modeling Results

- The inner divertor is easily detached.
 - Particle flux ~ 1 MW/m²
 - Radiated power flux 1.8 MW/m²
- Addition of Be to the outer divertor cases increases the radiated power to about 5 MW/m² and decreases the particle power to 20 MW/m²
- Addition of 30-35 Torr I/s of Ne to the outer divertor causes detachment (not a steady solution yet).
- Radiated power 80 MW/m³ when detached.

UEDGE Modeling Results

UEDGE Modeling Summary

- Inner divertor detaches easily
- Outer divertor heat flux 20-25 MW/m² attached
- Outer divertor can be detached with Ne addition
- Peak radiated power flux on divertor PFC ~6 MW/m²

- UEDGE plasma solution used as input
- DEGAS2 gives:
 - Neutral flux to walls
 - Neutral energy spectrum to walls
- These outputs are passed on to J. Brooks to do erosion/redeposition modeling

DEGAS2 Results

Inner divertor

Outer divertor

- Objective: Compute 1st wall and divertor net erosion rates, plasma contamination, and tritium codeposition, from sputtering.
- Method: Use REDEP/WBC impurity transport code package using FIRE plasma/geometry with DEGAS2 code neutrals calculation and VFTRIM-3D and other sputtering coefficients.
- Completed analysis: Tungsten erosion for divertor outer plate, "pure tungsten" surface, preliminary plasma model.

- Inputs: Outer plate and magnetic field geometry, plasma ion and electron profiles, DEGAS2 neutral flux. 0.1 % oxygen ion flux assumed.
- WBC Monte code used to compute detailed (single-particle, kinetic, sub-gyro motion) characteristics of sputtered tungsten transport. Code includes sputtered atom velocity distribution, electron impact ionization, Lorentz force motion, magnetic/Debye dual-structure sheath, impurity-plasma charge changing and velocity changing collisions.

- WBC redeposition parameters used as input to REDEP (integral equation type) code for computation of self-consistent gross and net erosion rates over entire outer divertor region.
- Results are favorable-essentially zero net erosion and plasma contamination predicted.

- REDEP Analysis: Sputtering erosion of a tungsten coated FIRE outer divertor plate for high recycle plasma with 0.1 % oxygen content.
- Net erosion rate is essentially zero due to very high redeposition of sputtered material.

Erosion/Redeposition Summary

- Tungsten is an excellent material choice from the sputtering erosion/redeposition standpoint.
- Most sputtered tungsten is ionized in the (magnetic) sheath. Strong frictional forces and/or sheath electric field then cause very fast ion redeposit.
- There is essentially zero net erosion and plasma contamination.
- Gross tungsten sputtering is due mostly to plasma impurities (oxygen) and self-sputtering, and not plasma fuel ions.

- Based on the database assembled for ITER
- Thermal quench phase
 - 33 MJ plasma stored energy
 - Variation of values from data
 - Uncertainty in understanding
 - Uncertainty in extrapolation to FIRE
 - Range of values specified for FIRE

	Low End Flux (MJ/m ²)	Reference Flux (MJ/m ²)	Most Likely (MJ/m²)	High End Flux (MJ/m ²)
Inner Divertor	8	13.4	31	96
Outer Divertor	4	6.8	16	48

- Current Quench Phase
 - Magnetic stored energy 35 MJ
 - Current decay time 2-6 ms
 - Average energy deposition to first wall 0.5 MJ/m2
 - Toroidal peaking factor 2:1
 - Thermal modeling predicts <0.1 mm melting of Be per disruption.

- Halo currents
 - The product of maximum halo current and the toroidal peaking factor is constant for the worst case
 - The maximum halo current at the worst location is 200 kA

Particle Fueling and Pumping

- Particle fueling requirements
 - Plasma particle content 10²²
 - Energy confinement time 0.65 s (0.5-0.8 s)
 - Particle confinement 2-10 t_E
 - Fueling efficiency 50%
 - Maximum fueling rate 75 Pa m³/s
- Pumping rate required to remove He
 - Fusion burn rate 10²⁰/s (200 MW)
 - He fraction in divertor 2% with wall recycling 0.5
 - Pumping rate required 100 Pa m³/s

Summary

- UEDGE modeling predicts 20-25 MW/m² heat flux on the outer divertor
- UEDGE shows the divertors can be detached
- There is no predicted erosion of W divertor plates
- Disruption conditions are specified
- Particle fueling of 75 Pa m³/s is required
- Particle pumping of 100 Pa m³/s is required

