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Plasma source goal: produce high-recycling, strongly 
coupled PMI regime, guided by ITER divertor plasma
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What source plasma parameters are required?

High-recycling, strongly 
coupled PMI regime
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Super-extended divertor tests aim to reduce peak heat 
flux while improving particle control

A companion challenge: lifetime divertor surface material 
evolution under manageable plasma heat fluxes
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Required source parameters & research
• Strongly coupled PMI regime
• Simulations of required 10-cm 

source plasmas @ 3m:
– Te, Ti ≤ 2535eV, 
– ne = 48x1019/m3, 
– Q ~ 20 MW/m2

• Prototype high intensity source 
experiment to obtain the 
needed experimental data base
– T1030eV,  
– ne=26x1019/m3

• Physics integration experiment
to test combination of helicon 
& electron heating
– Te = 1015eV

Prototype

Prototype

integration
heliconelectron 

heating

0.3 full-power-year operation in this condition would deliver the 
estimated divertor plasma heat and particle fluences of ITER life.
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Building block: Large, high-density helicon
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Power = 100kW, He

• Plasma diameter = 12 cm
• ne found to maximize at (He)

– Bmiddle ~ 0.07T & 0.3T
– Bmax/Bmiddle ~ 2.5 & 6.7
– ne ≤ 6x1019/m3

• Injected power ≤ 90kW (D) 
– ne ≤ 4x1019/m3 (70kW, 1150 sccm)

• Stationary condition in plasma-neutrals-
wall surface interaction time scales

BA

B

A

RF Power
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Advanced simulations of helicon plasmas led 
to new understanding

• SOLPS (B2-Eirene) (Jülich; Garching; U. Paris)
– Models for plasma-neutrals-wall interactions
– Kinetic Monte Carlo D0 and D2 statistics
– Adapted from tokamak to linear configuration
– New advance in simulating linear system

• Helicon device and operation conditions
– Up to 90 kW RF power injected (Pinject)
– 1200 sccm gas injection, 40 mTorr prefill
– Added model for electron heating (Pelec) 

• Match ne and Te data @ A & B (Pinject=70kW)
– ne = 3 x1019/m3, Te = 5-6 eV @ A
– Adjust Pelec(40kW) & downstream plasma flow

• Inferred from best match:
– D2 depleted by ~104 at plasma center
– Strong fueling recycled from upstream
– Helicon Qmax ~ 3MW/m2;  Pplasma / Pinject ~ 14%

A          B
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Building block: electron 
heating in over-dense 
mirror plasmas

• Tested whistler and EBW launching and 
absorption at modest fields and densities

• Demonstrated absorption and density 
increase in over-dense plasmas 

• Heating affected by neutral pressure
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Integration objectives, capabilities, and research
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flow
back
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• Investigate the addition of electron 
heating to helicon plasma
– Heating of helicon plasma electrons
– Effects back on helicon plasma production
– Neutral and plasma density control
– RF power-to-plasma heat flux efficiency
– Effects of plasma and impurity flow-back
– ICRF launcher-plasma interactions

4m

(helicon + electron heaters)

ICRF launcher 
plasma interaction
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Integration test (PhIX) assembly and facility
• Assembly completed in September, 2012

Building 7625
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Stepping from Integration 
to Prototype experiment

• Simulation under way for Integration test
• Add whistler and EBW heating (20 kW)
• Extend to Prototype

– Source fueling and power handling
– Plasma boundary & neutral pressure
– Ion heating (revive Archimedes RF supply!)
– Plasma & neutrals flow to target & back-flow
– Target particle recycling & impurity control

Prototype High Intensity Source Experiment (PHISX)

gas injection 
& W armor

W plasma limiter / 
neutral baffles

W target 
assembly

source-to-target 
transport section

helicon electron
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Integration simulation
fueling back-
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ASIPP-ORNL collaboration on Prototype
• Critical new components: CAD concept  3D models  fab drawings 

fabrication  inspection  shipping (early FY13)
• Include all-tungsten plasma facing components (armor, limiter-baffles, targets)
• Enable proof-of-principle experimentation on new high intensity plasma source

– Capable for up to 15 MW/m2 peak thermal plasma heat flux, up to 1-s
• Experimental research collaboration, involving US and CN researchers

ASIPP in-kind contribution
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Physics questions of interest to PHISX – I 
(3600 sccm, helicon gas puff) 
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• Fueling & pumping 
locations?

• How to raise target 
density toward 
1021/m3?

• dTe/dz dominated by 
parallel heat 
diffusivity?

• Neutrals depleted in 
source region; is 
fueling dominated by 
particle recycling from 
target and armor?
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to ion heating?
• Benefits of ICRF 

heating (~50kW 
absorbed, Ti ~ 50eV)?

• How to raise  toward 
1024/s/m2 and Q 
toward 20MW/m2 on 
target?

• How to maintain RF 
power absorption over 
ranges: 
ne = 1 – 4x1019/m3 and 
T = 5 – 20eV?

Physics questions of interest to PHISX – II 
(3600 sccm, helicon gas puff) 
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Summary – new plasma source research

• Intense plasma source will enable 
required testing of PMI/PFC options at 
much reduced cost and time

• Determined required plasma source 
parameters

• Roadmap: 
– High density Helicon 
– Over-dense plasma electron heating 
– Integration (FY13) 
– Physics prototype experiment 

(ASIPP-ORNL collaboration)


